Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00

Extension of injective immersions with application to numerical inversion and observer design

Pauline Bernard^a, Laurent Praly^a, Vincent Andrieu^b

 a Centre Automatique et Systèmes, MINES ParisTech, Université PSL b LAGEPP, CNRS, Lyon

SMAI, June 25th 2021

Introduction	Immersion extension	Image extension	Conclusion
●000000	00000	0000	00
Contents			

2 Around Problem 1 : Extension of an injective immersion into a diffeomorphism

- Sufficient condition
- Completion of a full rank matrix

3 Around Problem 2 : Extension of the image of a diffeomorphism

Introd	uction
0000	000

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Newton algorithm

If m = n,

$$\dot{\hat{x}} = -\left(rac{dT}{dx}(\hat{x})
ight)^{-1}T(\hat{x}) \quad,\quad \hat{x}(0)\in\mathcal{S}$$

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Newton algorithm

If m = n,

$$\dot{\hat{x}} = -\left(rac{dT}{dx}(\hat{x})
ight)^{-1}T(\hat{x}) \hspace{0.4cm}, \hspace{0.4cm} \hat{x}(0)\in\mathcal{S}$$

 $\hat{\xi} = T(\hat{x})$ verifies $\dot{\hat{\xi}} = -\hat{\xi}$ i.e. follows line between $T(\hat{x}(0))$ and 0

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Newton algorithm

If m = n,

$$\dot{\hat{x}} = -\left(rac{dT}{dx}(\hat{x})
ight)^{-1}T(\hat{x}) \hspace{0.4cm}, \hspace{0.4cm} \hat{x}(0)\in\mathcal{S}$$

 $\hat{\xi}=\mathcal{T}(\hat{x})$ verifies $\dot{\hat{\xi}}=-\hat{\xi}$ i.e. follows line between $\mathcal{T}(\hat{x}(0))$ and 0

 \Rightarrow works if only if $\mathcal{T}(\mathcal{S})$ star-shaped with respect to 0

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Newton algorithm

If m = n,

$$\dot{\hat{x}} = -\left(rac{dT}{dx}(\hat{x})
ight)^{-1}T(\hat{x}) \hspace{0.4cm}, \hspace{0.4cm} \hat{x}(0)\in\mathcal{S}$$

 $\hat{\xi}=T(\hat{x})$ verifies $\dot{\hat{\xi}}=-\hat{\xi}$ i.e. follows line between $T(\hat{x}(0))$ and 0

 \Rightarrow works if only if $\mathcal{T}(\mathcal{S})$ star-shaped with respect to 0

Otherwise, not defined or exploding solutions

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Newton algorithm

Gradient descent Minimize $J(x) = T(x)^{\top}T(x)$ on S

イロト イロト イヨト イヨト

If m = n,

 $\dot{\hat{x}} =$

$$-\left(rac{dT}{dx}(\hat{x})
ight)^{-1}T(\hat{x}) \hspace{0.3cm},\hspace{0.3cm} \hat{x}(0)\in\mathcal{S}$$

 $\hat{\xi}=T(\hat{x})$ verifies $\dot{\hat{\xi}}=-\hat{\xi}$ i.e. follows line between $T(\hat{x}(0))$ and 0

 \Rightarrow works if only if $\mathcal{T}(\mathcal{S})$ star-shaped with respect to 0

Otherwise, not defined or exploding solutions

MINES ParisTech

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Newton algorithm

Gradient descent

If m = n,

$$\dot{\hat{x}} = -\left(rac{dT}{dx}(\hat{x})
ight)^{-1}T(\hat{x}) \hspace{0.4cm},\hspace{0.4cm} \hat{x}(0)\in\mathcal{S}$$

 $\hat{\xi} = T(\hat{x})$ verifies $\dot{\hat{\xi}} = -\hat{\xi}$ i.e. follows line between $T(\hat{x}(0))$ and 0

 \Rightarrow works if only if $\mathcal{T}(\mathcal{S})$ star-shaped with respect to 0

Otherwise, not defined or exploding solutions

Minimize
$$J(x) = T(x)^{\top}T(x)$$
 on S

$$\dot{\hat{x}} = -\left(\frac{dT}{dx}(\hat{x})\right)^{\top}T(\hat{x})$$

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Newton algorithm

Gradient descent

If m = n,

$$\dot{\hat{x}} = -\left(rac{dT}{dx}(\hat{x})
ight)^{-1}T(\hat{x}) \quad,\quad \hat{x}(0)\in\mathcal{S}$$

 $\hat{\xi} = T(\hat{x})$ verifies $\dot{\hat{\xi}} = -\hat{\xi}$ i.e. follows line between $T(\hat{x}(0))$ and 0

Minimize $J(x) = T(x)^{\top} T(x)$ on S

$$\dot{\hat{x}} = -\left(\frac{dT}{dx}(\hat{x})\right)^{\top}T(\hat{x})$$

イロト イロト イヨト イヨト

 $||T(\hat{x}(t))||$ non-increasing

 \Rightarrow works if only if $\mathcal{T}(\mathcal{S})$ star-shaped with respect to 0

Otherwise, not defined or exploding solutions

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Newton algorithm

Gradient descent

If m = n,

$$\dot{\hat{x}} = -\left(rac{d au}{dx}(\hat{x})
ight)^{-1} au(\hat{x}) \quad,\quad \hat{x}(0)\in\mathcal{S}$$

 $\hat{\xi} = T(\hat{x})$ verifies $\dot{\hat{\xi}} = -\hat{\xi}$ i.e. follows line between $T(\hat{x}(0))$ and 0

 \Rightarrow works if only if $\mathcal{T}(\mathcal{S})$ star-shaped with respect to 0

Otherwise, not defined or exploding solutions

Minimize $J(x) = T(x)^{\top}T(x)$ on S

$$\dot{\hat{x}} = -\left(rac{dT}{dx}(\hat{x})
ight)^{ op}T(\hat{x})$$

 $\|T(\hat{x}(t))\|$ non-increasing

 \Rightarrow works if m = n and $\mathcal{B}_{\parallel T(\hat{x}(0)) \parallel} \subset T(\mathcal{S})$

ヘロト ヘロト ヘヨト ヘヨト

Otherwise : local minima or solutions tending to ∂S possible

Immersion extension

Image extension

Conclusion

Motivation 1 : numerical resolution of equations

Given $T : S \subset \mathbb{R}^n \to T(S) \subset \mathbb{R}^m$ an injective immersion such that $0 \in T(S)$ Compute x_s such that $T(x_s) = 0$.

Newton algorithm

Gradient descent

If m = n,

$$\dot{\hat{x}} = -\left(rac{d au}{dx}(\hat{x})
ight)^{-1} au(\hat{x}) \quad,\quad \hat{x}(0)\in\mathcal{S}$$

 $\hat{\xi} = T(\hat{x})$ verifies $\dot{\hat{\xi}} = -\hat{\xi}$ i.e. follows line between $T(\hat{x}(0))$ and 0

 \Rightarrow works if only if $\mathcal{T}(\mathcal{S})$ star-shaped with respect to 0

Otherwise, not defined or exploding solutions

Minimize $J(x) = T(x)^{\top}T(x)$ on S

$$\dot{\hat{x}} = -\left(rac{dT}{dx}(\hat{x})
ight)^{ op}T(\hat{x})$$

 $\|T(\hat{x}(t))\|$ non-increasing

 \Rightarrow works if m = n and $\mathcal{B}_{\parallel T(\hat{x}(0)) \parallel} \subset T(\mathcal{S})$

 $\begin{array}{l} \mbox{Otherwise: local minima or solutions} \\ \mbox{tending to } \partial \mathcal{S} \mbox{ possible} \end{array}$

 \Rightarrow works if T diffeomorphism (m = n) and $T(S) = \mathbb{R}^n$

Introduction Concentration	inage extension	Conclusion
000000 00000	0000	00

Motivation 2 : observer design

More generally consider a dynamical system

$$\dot{x} = f(x, u)$$
, $y = h(x, u)$

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00

Motivation 2 : observer design

More generally consider a dynamical system

$$\dot{x} = f(x, u)$$
, $y = h(x, u)$

Observation problem

Whatever u in \mathcal{U} , whatever the initial condition $x_0 \in \mathcal{X}_0$, find an estimate $\hat{x}(t)$ of x(t) at each time $t \ge 0$, based on $u_{[0,t]}$ and $y_{[0,t]}$ and such that

$$\lim_{\to +\infty} \hat{x}(t) - x(t) = 0 \; .$$

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00

Motivation 2 : observer design

More generally consider a dynamical system

$$\dot{x} = f(x, u)$$
, $y = h(x, u)$

Observation problem

Whatever u in \mathcal{U} , whatever the initial condition $x_0 \in \mathcal{X}_0$, find an estimate $\hat{x}(t)$ of x(t) at each time $t \ge 0$, based on $u_{[0,t]}$ and $y_{[0,t]}$ and such that

$$\lim_{\to +\infty} \hat{x}(t) - x(t) = 0 \; .$$

- T and φ known
- T injective immersion on $S \implies T^{-1}$ defined on manifold T(S)

- T and φ known
- T injective immersion on $S \implies T^{-1}$ defined on manifold T(S)
- BUT analytical expression of T^{-1} not available $\hat{\xi} \in \mathbb{R}^m$, not necessarily in T(S)

- T and φ known
- T injective immersion on $S \implies T^{-1}$ defined on manifold T(S)
- BUT analytical expression of T^{-1} not available $\hat{\xi} \in \mathbb{R}^m$, not necessarily in T(S)

Can we write $\hat{\xi}$ directly in the x-coordinates to avoid the inversion problem ?

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00

 $T: \mathcal{S} \subset \mathbb{R}^n \to T(\mathcal{S}) \subset \mathbb{R}^m$ injective immersion

Idea : add m - n dimensions to the state \times through a new variable $w \in \mathbb{R}^{m-n}$ and augment T into a diffeomorphism $T_e : S \times S_w \to T_e(S \times S_w) \subset \mathbb{R}^m$ such that

$$T_e(x,0) = T(x) \qquad \forall x \in \mathcal{X}$$

・ロト ・回ト ・ヨト ・ヨト

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00

 $T: \mathcal{S} \subset \mathbb{R}^n \to T(\mathcal{S}) \subset \mathbb{R}^m$ injective immersion

Idea : add m - n dimensions to the state \times through a new variable $w \in \mathbb{R}^{m-n}$ and augment T into a diffeomorphism $T_e : S \times S_w \to T_e(S \times S_w) \subset \mathbb{R}^m$ such that

$$T_e(x,0) = T(x) \qquad \forall x \in \mathcal{X}$$

= Apply observer/algorithm to T_e instead of T :

$$\boxed{\left[\begin{array}{c} \hat{x} \\ \hat{w} \end{array}\right]} = \underbrace{\left(\frac{dT_e}{d(x,w)}(\hat{x},\hat{w})\right)^{-1}}_{\text{invertible for } (\hat{x},\hat{w}) \in S \times S} \varphi(T_e(\hat{x},\hat{w}), u, y) .$$

Tool 1 : augmentation of an injective immersion into a diffeomorphism

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00

 $T: \mathcal{S} \subset \mathbb{R}^n \to T(\mathcal{S}) \subset \mathbb{R}^m$ injective immersion

Idea : add m - n dimensions to the state \times through a new variable $w \in \mathbb{R}^{m-n}$ and augment T into a diffeomorphism $T_e : S \times S_w \to T_e(S \times S_w) \subset \mathbb{R}^m$ such that

$$T_e(x,0) = T(x) \qquad \forall x \in \mathcal{X}$$

=> Apply observer/algorithm to T_e instead of T :

$$\boxed{\begin{bmatrix} \hat{x} \\ \hat{w} \end{bmatrix}} = \underbrace{\left(\frac{dT_e}{d(x,w)}(\hat{x},\hat{w}) \right)^{-1}}_{\text{invertible for } (\hat{x},\hat{w}) \in S \times S_{w}} \varphi(T_e(\hat{x},\hat{w}), u, y) .$$

Tool 1 : augmentation of an injective immersion into a diffeomorphism

 $\mathsf{BUT}\ (\hat{x}, \hat{w}) \text{ must stay in } \mathcal{S} \times \mathcal{S}_w \qquad \Longleftrightarrow \qquad \hat{\xi} = \mathcal{T}_e(\hat{x}, \hat{w}) \text{ must stay in } \mathcal{T}_e(\mathcal{S} \times \mathcal{S}_w)$

イロン イロン イヨン イヨン

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00

 $T: \mathcal{S} \subset \mathbb{R}^n \to T(\mathcal{S}) \subset \mathbb{R}^m$ injective immersion

Idea : add m - n dimensions to the state \times through a new variable $w \in \mathbb{R}^{m-n}$ and augment T into a diffeomorphism $T_e : S \times S_w \to T_e(S \times S_w) \subset \mathbb{R}^m$ such that

$$T_e(x,0) = T(x) \qquad \forall x \in \mathcal{X}$$

= Apply observer/algorithm to T_e instead of T :

$$\boxed{\left[\begin{array}{c} \hat{x} \\ \hat{w} \end{array}\right]} = \underbrace{\left(\frac{dT_e}{d(x,w)}(\hat{x},\hat{w})\right)^{-1}}_{\text{invertible for } (\hat{x},\hat{w}) \in S \times S} \varphi(T_e(\hat{x},\hat{w}), u, y) .$$

Tool 1 : augmentation of an injective immersion into a diffeomorphism

BUT (\hat{x}, \hat{w}) must stay in $S \times S_w \iff \hat{\xi} = T_e(\hat{x}, \hat{w})$ must stay in $T_e(S \times S_w)$ => OK if $T_e(S \times S_w) = \mathbb{R}^m$

Tool 2 : extension of the image of a diffeomorphism

Pauline Bernard

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00

Assumption : \mathcal{X} bounded such that $x(t) \in \mathcal{X}$ for all t and any x_0 in \mathcal{X}_0

Theorem (Observer with coordinate augmentation)

Assume there exist a diffeomorphism $T_e : S_a \to \mathbb{R}^m$ such that

- $T_e(x,0) = T(x) \quad \forall x \in \mathcal{X} \quad => Problem 1$
- $T_e(\mathcal{S}_a) = \mathbb{R}^m \quad => Problem 2$

For any initial condition x_0 in \mathcal{X}_0 and (\hat{x}_0, \hat{w}_0) in \mathcal{S}_a , the solution of

$$\boxed{\left[\begin{array}{c} \hat{x} \\ \hat{w} \end{array}\right]} = \left(\frac{dT_e}{d(x,w)}(\hat{x},\hat{w})\right)^{-1} \underbrace{\varphi(T_e(\hat{x},\hat{w}),u,y)}_{given \ observer}$$

is defined on $[0, +\infty)$ and satisfies :

$$\lim_{t\to+\infty}|\hat{w}(t)|+|x(t)-\hat{x}(t)|=0 \ .$$

イロン イ団 とくほと くほとう

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00
Contents			

2 Around Problem 1 : Extension of an injective immersion into a diffeomorphism

- Sufficient condition
- Completion of a full rank matrix

3 Around Problem 2 : Extension of the image of a diffeomorphism

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00
Contents			

2 Around Problem 1 : Extension of an injective immersion into a diffeomorphism

- Sufficient condition
- Completion of a full rank matrix

3 Around Problem 2 : Extension of the image of a diffeomorphism

< □ > < □ > < □ > < □ > < □ >

Introd	uction
0000	000

Image extension

Conclusion

Sufficient condition to solve Problem 1

Theorem (Jacobian completion)

Let $T : S \subset \mathbb{R}^n \to \mathbb{R}^m$ be an injective immersion.

If there exist

- a **bounded** open set $\tilde{\mathcal{S}}$ such that $\mathsf{cl}(\tilde{\mathcal{S}}) \subset \mathcal{S}$
- a C^2 function $\gamma : cl(\tilde{S}) \to \mathbb{R}^{m*(m-n)}$ satisfying :

$$\det\left(\frac{dT}{dx}(x) \quad \gamma(x)\right) \neq 0$$

 $\forall x \in \mathsf{cl}(\tilde{\mathcal{S}}) \;,$

イロト イボト イヨト イヨト

continuous completion of the Jacobian

then there exists $\varepsilon > 0$ such that the function defined by

$$T_a(x,w) = T(x) + \gamma(x) w$$

is a diffeomorphism on

$$\mathcal{S}_a = \tilde{\mathcal{S}} imes \mathcal{B}_{\varepsilon}(0) \subset \mathbb{R}^{m-n}$$

How to complete continuously a full-rank matrix?

Pauline Bernard

Introduction	Immersion extension	Image extension	Conclusion
000000	0000	0000	00
Wazewski's approac	h		

Wazewski's problem :

Given mn continuous functions $\psi_{ij} : S \subset \mathbb{R}^n \to \mathbb{R}$, can we find m(m-n) continuous functions $\gamma_{kl} : S \to \mathbb{R}$ such that the matrix

$$P(x) = (\psi(x) \quad \gamma(x))$$

is invertible for all x in S?

Introduction	Immersion extension	Image extension	Conclusion
0000000	0000	0000	00
Wazewski's approac	h		

Wazewski's problem :

Given mn continuous functions $\psi_{ij} : S \subset \mathbb{R}^n \to \mathbb{R}$, can we find m(m-n) continuous functions $\gamma_{kl} : S \to \mathbb{R}$ such that the matrix

$$P(x) = (\psi(x) \quad \gamma(x))$$

is invertible for all x in S?

Théorème (Wazewski)

If $S \subset \mathbb{R}^n$ is **contractible**, then there exists a C^{∞} function γ making the matrix P(x) invertible for all x in S.

But are there cases where an explicit and universal formula exists?

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00
Example			

$$T(x) = \begin{pmatrix} \psi_1(x_1, x_2) \\ \psi_2(x_1, x_2) \\ \psi_3(x_1, x_2) \end{pmatrix} \longrightarrow \frac{dT}{dx}(x) = \begin{pmatrix} \partial_1 \psi_1(x_1, x_2) & \partial_2 \psi_1(x_1, x_2) \\ \partial_1 \psi_2(x_1, x_2) & \partial_2 \psi_2(x_1, x_2) \\ \partial_1 \psi_3(x_1, x_2) & \partial_2 \psi_3(x_1, x_2) \end{pmatrix} \text{ full rank}$$

How to add m - n = 1 column to get an invertible matrix for all $x \in S$?

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00
Example			

$$T(x) = \begin{pmatrix} \psi_1(x_1, x_2) \\ \psi_2(x_1, x_2) \\ \psi_3(x_1, x_2) \end{pmatrix} \longrightarrow \frac{dT}{dx}(x) = \begin{pmatrix} \partial_1 \psi_1(x_1, x_2) & \partial_2 \psi_1(x_1, x_2) \\ \partial_1 \psi_2(x_1, x_2) & \partial_2 \psi_2(x_1, x_2) \\ \partial_1 \psi_3(x_1, x_2) & \partial_2 \psi_3(x_1, x_2) \end{pmatrix} \text{ full rank}$$

How to add m - n = 1 column to get an invertible matrix for all $x \in S$?

$$\det \begin{pmatrix} \partial_1 \psi_1(x_1, x_2) & \partial_2 \psi_1(x_1, x_2) & M_{13}(x) \\ \partial_1 \psi_2(x_1, x_2) & \partial_2 \psi_2(x_1, x_2) & -M_{23}(x) \\ \partial_1 \psi_3(x_1, x_2) & \partial_2 \psi_3(x_1, x_2) & M_{33}(x) \end{pmatrix} = M_{13}(x)^2 + M_{23}(x)^2 + M_{33}(x)^2 \neq 0$$

where $M_{ij}(x)$ are the matrix minors.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00
Example			

$$T(x) = \begin{pmatrix} \psi_1(x_1, x_2) \\ \psi_2(x_1, x_2) \\ \psi_3(x_1, x_2) \end{pmatrix} \longrightarrow \frac{dT}{dx}(x) = \begin{pmatrix} \partial_1 \psi_1(x_1, x_2) & \partial_2 \psi_1(x_1, x_2) \\ \partial_1 \psi_2(x_1, x_2) & \partial_2 \psi_2(x_1, x_2) \\ \partial_1 \psi_3(x_1, x_2) & \partial_2 \psi_3(x_1, x_2) \end{pmatrix} \text{ full rank}$$

How to add m - n = 1 column to get an invertible matrix for all $x \in S$?

$$\det \begin{pmatrix} \partial_1 \psi_1(x_1, x_2) & \partial_2 \psi_1(x_1, x_2) & M_{13}(x) \\ \partial_1 \psi_2(x_1, x_2) & \partial_2 \psi_2(x_1, x_2) & -M_{23}(x) \\ \partial_1 \psi_3(x_1, x_2) & \partial_2 \psi_3(x_1, x_2) & M_{33}(x) \end{pmatrix} = M_{13}(x)^2 + M_{23}(x)^2 + M_{33}(x)^2 \neq 0$$

where $M_{ij}(x)$ are the matrix minors.

=> not always possible for topological reasons

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00
Eckmann's approach			

P[m, n] problem :

For a $m \times n$ continuous matrix ψ of rank n (with n < m), can we find $\gamma(\psi)$ of dimension $m \times m - n$ continuous in the coefficients of ψ , such that :

 $\begin{pmatrix} \psi & \gamma(\psi) \end{pmatrix}$

is invertible?

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00
Eckmann's approach			

P[*m*, *n*] problem :

For a $m \times n$ continuous matrix ψ of rank n (with n < m), can we find $\gamma(\psi)$ of dimension $m \times m - n$ continuous in the coefficients of ψ , such that :

 $\begin{pmatrix} \psi & \gamma(\psi) \end{pmatrix}$

is invertible ?

Theorem (Eckmann)

The P[m, n] problem has a solution only in the following cases :

$$m=22$$
 4 8
 $n=m-1$ 1 1

 \Rightarrow always possible to have n = m - 1, maybe adding m - n - 1 zeros to T

イロト 不得 トイヨト イヨト

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00
Contents			

2 Around Problem 1 : Extension of an injective immersion into a diffeomorphism

- Sufficient condition
- Completion of a full rank matrix

3 Around Problem 2 : Extension of the image of a diffeomorphism

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00

z = (x, w)

<ロ> (四)、(四)、(日)、(日)、

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	00

z = (x, w)

イロン イロン イヨン イヨン

1) Look for ϕ diffeomorphism from $T_a(S_a)$ to \mathbb{R}^m

2) Take $T_e = \phi \circ T_a$

 $=> T_e(\mathcal{S}_a) = \mathbb{R}^m$

=> completeness of solutions

Pauline Bernard

MINES ParisTech

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00

Sufficient conditions for image extension

Condition (C)

An open subset E of \mathbb{R}^m verifies Condition (C) if there exist a C^1 function $\kappa : \mathbb{R}^m \to \mathbb{R}$, a bounded C^1 vector field χ , and a point P in E such that :

- $E = \{\xi \in \mathbb{R}^m : \kappa(\xi) < 0\}$
- ${\it P}$ is globally attractive for χ
- we have the transversality property :

$$rac{\partial\kappa}{\partial\xi}(\xi)\chi(\xi)<0\qquad orall\xi\in\mathbb{R}^m:\kappa(\xi)=0.$$

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	000●	00

Sufficient conditions for image extension :

Theorem (Image extension)

Let S_a be an open subset of \mathbb{R}^m and $T_a : S_a \to \mathbb{R}^m$ be a diffeomorphism.

lf

```
either T_a(S_a) verifies Condition (C),
```

then there exists a diffeomorphism $T_e: \mathcal{S}_a \to \mathbb{R}^m$ such that

- $T_e = T_a$ on $\mathcal{X} \times \{0\}$
- $T_e(\mathcal{S}_a) = \mathbb{R}^m$

i-e Problem 2 is solved.

MINES ParisTech

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	000●	00

Sufficient conditions for image extension :

Theorem (Image extension)

Let S_a be an open subset of \mathbb{R}^m and $T_a : S_a \to \mathbb{R}^m$ be a diffeomorphism.

lf

- either $T_a(S_a)$ verifies Condition (C),
 - or S_a is C^2 -diffeomorphic to \mathbb{R}^m and T_a is C^2 ,

then there exists a diffeomorphism $T_e : S_a \to \mathbb{R}^m$ such that

- $T_e = T_a$ on $\mathcal{X} \times \{0\}$
- $T_e(\mathcal{S}_a) = \mathbb{R}^m$

i-e Problem 2 is solved.

Pauline Bernard

Introduction	Immersion extension	Image extension	Conclusion
000000	00000	0000	•0
Contents			

2 Around Problem 1 : Extension of an injective immersion into a diffeomorphism

- Sufficient condition
- Completion of a full rank matrix

3 Around Problem 2 : Extension of the image of a diffeomorphism

Introduction	Immersion extension	Image extension	Conclusion
0000000	00000	0000	00
-			

Conclusion

Goal : augmentation of injective immersion into surjective diffeomorphism

Application :

- observer implementation in the plant coordinates
- numerical inversion of an injective immersion
- no local minima and completeness of solutions guaranteed

Difficulty : practical implementation of the image extension

