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e Modeling the brain is an interesting problem from both
mathematical and neuroscience viewpoint. PDEs arising from
stochastic models have been a very active area in recent
decades.

e One of these equations is the elapsed-time model, where
neurons are described by their elapsed time since their last
discharge i.e. the refractory period.

e Neurons undergo a charging process and then a sudden
discharge takes place in response to certain stimulus and this
causes other neighboring neurons to discharge depending on
the intensity of interconnections.



Background

microscopic cortical data

Ex[x10%mm?]

() m—

60

thalamo-cortical input

microscopic model
(network of spiking neurons)

background input

— excitatory

refractory den:
method

thalamo-cortical input

inhibitory

background input

— excitatory
inhibitory

mesoscopic model
(neural populations)

N
3

I
So

¥ L_,AA_.LEM.;Q
&=
z
. s
simulate | § wa
8
»| o 5
> 1z Lol b
- 2
) 228
infer §
0
0 01 0 01
time [s]
mesoscopic

population activities



Elapsed time model

Neural network modelled via the age-structure equation

On(t,s) + Osnl(t,s) + p(s, N( )) ( s) =0,
N(t):=n(t,s=0)= [["p t))n(t,s)ds, (1)
n(t =0,s) =no(s).

e n(t,s): Density of neurons at time ¢, whose elapsed time since

the last discharge is s.

e N(t): Flux of discharging neurons, which corresponds to
the neural activity.



Elapsed time model

Neural network modelled via the age-structure equation

on(t, s) + dsn(t,s) + p(s, N(t))n(t,s) =0,
N(t) :==n(t,s =0) = [;° p(s. N(t))n(t, s) ds,
n(t =0,s) = no(s).

p(s,u): Firing rate of discharging neurons of age s,
submitted to an amplitude of stimulation u > 0.

Inhibitory case: d,p < 0.

Excitatory case: d,p > 0.

Weak interconnections: ||0,p||cc small.



Elapsed time model

Neural network modelled via the age-structure equation
On(t, s) + dsn(t, S)+p(8 N( )) ( ,8) =0,
N(t):=n(t,s=0)= [["p t))n(t,s)ds,
n(t=0,s) = no(,, )

e no(s): Initial data, with ng € L' and ng > 0.

e Mass-conservation:

/ n(t,s)ds:/ no(s)ds=1 Vt>0.
0 0



Steady states

Time-independent problem for (n*, N*)

dsn*(s) + p(s, N*)n*(s) = 0,
N*:=n(s=0) = [;" p(s, N*)n*(s) ds, . (2)
Solved through the formula

n() N*e—Jop sN*d7

u N —1
N* = F(N*) — (fooo e*fo p(s’,N*)ds du)

Unique solution for weak interconnections and inhibitory case.



Convergence for the weak interconnections case

Theorem (Cafizo-Yoldas)
Assume that p € L satisfies for some constant pg, poo,d > 0
Pol{ssoy < p(8u) < Poo-

Then for weak interconnections there exists C, A > 0 such that the
solution n of (1) satisfies for all t > 0

In(t) = n*[|p2 < Ce™M|ng —n*|| 1.

Moreover |N (t) — N*| converges exponentially to 0 when t — co.




Dynamics in the general case?

Classical methods like Entropy method and Doeblin’s theory deal
only with weak interconnections. The main idea is to consider a
case beyond weak interconnections.

Conjecture (Strong interconnections)

Assume ||p|| large enough. If O,p < 0, then there all the solutions
converge to a unique steady state. If 9, > 0, then a periodic
solution may arise.




Assumptions on the firing rate

Consider p given by
p(s,u) = (P(u)]l{s>a}7
with o > 0 and ¢ smooth satisfying

0<a<o(u) <p.



Assumptions on the firing rate

Consider p given by
p(s,u) = o(u) sy,
with o > 0 and ¢ smooth satisfying
0<a<o(u) <p.

Important function for the analysis

U i = P —ue ()
B B = )

Cases to study: v’ strictly positive and v’ changing sign.



Reduction to a delay differential equation

Lemma (Reduction to a delay equation)

For t > o the discharge flux N(t) satisfies

N(s)ds+¢(N(t)) = 1. (3)

t—o

Moreover if N(t) is smooth for t > o, the following formula for
N'(t) holds

d
ZU(N() = N(t —0) = N(®). “)

v




Reconstructing a solution from a given activity

Theorem (Reconstruction theorem )

Let N € L*>(0,00) a non-negative satisfying
P(N(t)) € C([o,0)) NCL((0,0)) and the following conditions:

oN(a—t)—l—d(ngiV))(a—t)>0 for 0<t<o.

e N(t) solves the integral equation (3) for t > o.

Then we can construct a solution of elapsed-time equation with
N(t) as activity.




Convergence for the inhibitory and weakly excitatory case

Theorem (Convergence for ¢/’ > 0)
Assume that i)' > 0, then the solutions of the system (1) satisfy

n(t) —n*|lr =0, |N(t)—N*| =0, when t— oo,

and N (t) oscillates around N*.




Convergence for the inhibitory and weakly excitatory case
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Figure: Activity N (t) for o(u) =1+ 2e72%, o = 2 and ng(s) = e~*.



Convergence for the inhibitory and weakly excitatory case

Figure: Activity N (¢) for o(u) = (1 +e %), 0 =2 and no(s) = e~*.



Periodic solutions when 1)’ changes sign

Theorem (Existence of periodic solutions)
Consider 1) smooth and 0 < N~ < N < N7, such that

Pp(NT) = (N

with a unique local minimum N € (N—,N*).
Then for o small there exists a 20 periodic solution N (t) of the
delay equation with 1)(N) € W1>°(R) and the following conditions:

; N<N(t)<NT, N'(t) <0 for te(0,0),

N-<N(@)<N, N'(t) <0 for te(o,20).
2. NO")=N* N(207)=N".
3. Y(N(o™)) = $(N(oH).




Periodic solutions when %)’ changes sign

W(N)=y(N*)

Figure: Example of values N~ < N < N satisfying the hypothesis.



Periodic solution when 1)’ changes sign
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Figure: Activity N(t) for p(u) = 52};21 +0.5,0=1and
no(s) = 67(5’1)]1{91}.



Periodic solution when 1)’ changes sign
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Figure: Plot of ¥)(N(t)) for p(u) = 52121 +0.5,0=1and
no(s) = 67(5’1)]1{91}.




Multiplicity of solutions when )’

changes sing
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Figure: Multiple equilibriums for p(N) =
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Multiplicity of solutions when )" changes sing

Figure: Different possible solutions for ng(s) = e~ (=991, 45,
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(a) Activity N(t) for Ng. (b) Activity N(t) for Ng.



Multiplicity of solutions when )" changes sing
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Figure: Activity N (t) for N3.



Open questions

Is the type of obtained solutions structurally stable?

Speed of convergence to the observed patterns?

When a solution has jump discontinuities?

What kind of periodic patterns are attractive?

Existence of continuous periodic solutions?



Thank you for your attention.
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