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Background

• Modeling the brain is an interesting problem from both
mathematical and neuroscience viewpoint. PDEs arising from
stochastic models have been a very active area in recent
decades.

• One of these equations is the elapsed-time model, where
neurons are described by their elapsed time since their last
discharge i.e. the refractory period.

• Neurons undergo a charging process and then a sudden
discharge takes place in response to certain stimulus and this
causes other neighboring neurons to discharge depending on
the intensity of interconnections.
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Elapsed time model

Neural network modelled via the age-structure equation
∂tn(t, s) + ∂sn(t, s) + p(s,N(t))n(t, s) = 0,

N(t) := n(t, s = 0) =
∫∞
0 p(s,N(t))n(t, s) ds,

n(t = 0, s) = n0(s).

(1)

• n(t, s): Density of neurons at time t, whose elapsed time since
the last discharge is s.
• N(t): Flux of discharging neurons, which corresponds to

the neural activity.
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• p(s, u): Firing rate of discharging neurons of age s,
submitted to an amplitude of stimulation u ≥ 0.
• Inhibitory case: ∂up < 0.
• Excitatory case: ∂up > 0.
• Weak interconnections: ‖∂up‖∞ small.



Elapsed time model

Neural network modelled via the age-structure equation
∂tn(t, s) + ∂sn(t, s) + p(s,N(t))n(t, s) = 0,

N(t) := n(t, s = 0) =
∫∞
0 p(s,N(t))n(t, s) ds,

n(t = 0, s) = n0(s).

• n0(s): Initial data, with n0 ∈ L1 and n0 ≥ 0.
• Mass-conservation:∫ ∞

0
n(t, s) ds =

∫ ∞
0

n0(s) ds = 1 ∀t > 0.



Steady states

Time-independent problem for (n∗, N∗){
∂sn
∗(s) + p(s,N∗)n∗(s) = 0,

N∗ := n(s = 0) =
∫∞
0 p(s,N∗)n∗(s) ds, .

(2)

Solved through the formula

n∗(s) = N∗e−
∫ s
0 p(s

′,N∗)ds′ ,

N∗ = F (N∗) :=
(∫∞

0 e−
∫ u
0 p(s′,N∗)ds′du

)−1
.

Unique solution for weak interconnections and inhibitory case.



Convergence for the weak interconnections case

Theorem (Cañizo-Yoldas)

Assume that p ∈ L∞ satisfies for some constant p0, p∞, σ > 0

p01{s>σ} ≤ p(s, u) ≤ p∞.

Then for weak interconnections there exists C, λ > 0 such that the
solution n of (1) satisfies for all t > 0

‖n(t)− n∗‖L1 ≤ Ce−λt‖n0 − n∗‖L1 .

Moreover |N(t)−N∗| converges exponentially to 0 when t→∞.



Dynamics in the general case?

Classical methods like Entropy method and Doeblin’s theory deal
only with weak interconnections. The main idea is to consider a
case beyond weak interconnections.

Conjecture (Strong interconnections)

Assume ‖p‖∞ large enough. If ∂up < 0, then there all the solutions
converge to a unique steady state. If ∂u > 0, then a periodic
solution may arise.



Assumptions on the firing rate

Consider p given by

p(s, u) = ϕ(u)1{s>σ},

with σ > 0 and ϕ smooth satisfying

0 < α ≤ ϕ(u) ≤ β.

Important function for the analysis

ψ(u) :=
u

ϕ(u)
with ψ′(u) =

ϕ(u)− uϕ′(u)

ϕ2(u)
.

Cases to study: ψ′ strictly positive and ψ′ changing sign.
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Reduction to a delay differential equation

Lemma (Reduction to a delay equation)

For t > σ the discharge flux N(t) satisfies∫ t

t−σ
N(s) ds+ ψ(N(t)) = 1. (3)

Moreover if N(t) is smooth for t > σ, the following formula for
N ′(t) holds

d

dt
ψ(N(t)) = N(t− σ)−N(t). (4)



Reconstructing a solution from a given activity

Theorem (Reconstruction theorem )

Let N ∈ L∞(0,∞) a non-negative satisfying
ψ(N(t)) ∈ C([σ,∞)) ∩ C1((0, σ)) and the following conditions:

•N(σ − t) +
d(ψ(N))

dt
(σ − t) ≥ 0 for 0 < t < σ.

•N(t) solves the integral equation (3) for t ≥ σ.

Then we can construct a solution of elapsed-time equation with
N(t) as activity.



Convergence for the inhibitory and weakly excitatory case

Theorem (Convergence for ψ′ > 0)

Assume that ψ′ > 0, then the solutions of the system (1) satisfy

‖n(t)− n∗‖L1 → 0, |N(t)−N∗| → 0, when t→∞,

and N(t) oscillates around N∗.



Convergence for the inhibitory and weakly excitatory case
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Figure: Activity N(t) for ϕ(u) = 1 + 2e−2u, σ = 2 and n0(s) = e−s.



Convergence for the inhibitory and weakly excitatory case

0 2 4 6 8 10 12 14

Time t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
(t

)

Figure: Activity N(t) for ϕ(u) = (1 + e−u)−1, σ = 2 and n0(s) = e−s.



Periodic solutions when ψ′ changes sign

Theorem (Existence of periodic solutions)

Consider ψ smooth and 0 < N̄− < N < N̄+, such that

ψ(N̄−) = ψ(N̄+)

with a unique local minimum N ∈ (N̄−, N̄+).

Then for σ small there exists a 2σ periodic solution N(t) of the
delay equation with ψ(N) ∈W 1,∞(R) and the following conditions:

1.
{
N < N(t) < N̄+, N ′(t) < 0 for t ∈ (0, σ),
N̄− < N(t) < N, N ′(t) < 0 for t ∈ (σ, 2σ).

2. N(0+) = N̄+, N(2σ−) = N̄−.
3. ψ(N(σ−)) = ψ(N(σ+)).



Periodic solutions when ψ′ changes sign

Figure: Example of values N̄− < N < N̄+ satisfying the hypothesis.



Periodic solution when ψ′ changes sign
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Figure: Activity N(t) for ϕ(u) = 10u2

u2+1 + 0.5, σ = 1 and
n0(s) = e−(s−1)1{s>1}.



Periodic solution when ψ′ changes sign
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Figure: Plot of ψ(N(t)) for ϕ(u) = 10u2

u2+1 + 0.5, σ = 1 and
n0(s) = e−(s−1)1{s>1}.



Multiplicity of solutions when ψ′ changes sing
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Figure: Multiple equilibriums for ϕ(N) = 1
1+e−9N+3.5 and σ = 0.5.



Multiplicity of solutions when ψ′ changes sing

Figure: Different possible solutions for n0(s) = e−(s−0.5)1{s>0.5}

0 2 4 6 8 10 12

Time t

0.0408

0.041

0.0412

0.0414

0.0416

0.0418

0.042

0.0422

0.0424

N
(t

)

(a) Activity N(t) for N1
0 .
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(b) Activity N(t) for N2
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Multiplicity of solutions when ψ′ changes sing
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Figure: Activity N(t) for N3
0 .



Open questions

• Is the type of obtained solutions structurally stable?

• Speed of convergence to the observed patterns?

• When a solution has jump discontinuities?

• What kind of periodic patterns are attractive?

• Existence of continuous periodic solutions?



Thank you for your attention.
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