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Domain decomposition with non-local transmission
operators
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Can be generalized to
> variable coefficients

> other type of boundary conditions
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“Onion-like” decomposition
= no cross-points [in the first part of the talk]




Domain decomposition

(~A=K)u-= flo z
TC.onZX

(—A—k*us = fla,
T.C.onZ

Which choice of transmission condition on X2
> Continuity of traces (f € L?(Q))

You := uls Dirichlet
Yiu:

YolU-=7Yo U+
k~10nuls Neumann

where
Yiu-=Yi1u4



Transmission operator
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Impedance-based / generalized Robin transmission condition

» Tis aboundary operator
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The equivalence holds provided T is injective




Transmission operator

(~A=K)u-= flo z
(r1+iTyo) u- = (y1+iTyo) us
(~A-k*)us = fla,
(y1=iTyo) u+ = (y1-iTy0) u-

Sufficient condition for well-posedness of local problems
> Tis a positive and self-adjoint boundary operator

Proof: Fredholm alternative




Reformulation at the interface

(y1+iTyo) u-=(y1+iTyo) us

(~A-KHus = fla,
(y1-iTyo) us = (y1—iTy0) u-

{(—A—kz)u_ = fla. z

» Reformulation at the interface
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X+

X_
X4

X:= : =b
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(y1-iTyo) us
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Id_[ld 0jl0 S:
TT/
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Reformulation at the interface

(—A- K" = flo. z
(y1+iTyo) u" = (y1 +iTyo) [rut+ 1 - )}

(A=K u" = flq,
(y1=iTyo) uf = (y1=iTyo) [ruf™ + A - ryu™']

» Reformulation at the interface

X_—
X+

X_
X4

X:i=

=b

[()/1 +iT yo) u-
(y1-iT yo) us+

0 Id] [S_ 0

Id_[ld 0jl0 S:
TT/

(Id-11S)x=b

Analysis: (relaxed) Jacobi algorithm

X' =rx" 1+ 1 -nOSx* ' +b nenN




Convergence result
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THEOREM Ifr €(0,1) and T is a positive self-adjoint isomorphism
T: H"2®) — H'2(3)
then the iterative algorithm converges geometrically

Jr<l: |ul—us|+]|u-u-| = CT"
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Convergence result

(—A— k) u" = flo_ z
(y1+iTyo) u" = (y1 +iTyo) [rut+ 1 - )}
(—A—k*)u" = fla,

(y1—iTyo) u = (y1 —iTyo) [ru + 1 - r)u"7}]

THEOREM Ifr €(0,1) and T is a positive self-adjoint isomorphism
T: H"2®) — H'2(3)

then the iterative algorithm converges geometrically

Jr<l: |ul—us|+]|u-u-| = CT"

Remark: T is necessarily non-local
Proof: [Collino Ghanemi Joly 2000] [Collino Joly Lecouvez 2020]
» TIIS is a contraction (energy conservation result)

» Id - IIS is an isomorphism (well-posedness of a transmission problem)



Convergence result

(—A— k) u" = flo_ z
(y1+iTyo) u" = (y1 +iTyo) [rut+ 1 - )}
(—A—k*)u" = fla,

(y1—iTyo) u = (y1 —iTyo) [ru + 1 - r)u"7}]

THEOREM Ifr €(0,1) and T is a positive self-adjoint isomorphism
T: H"2®) — H'2(3)

then the iterative algorithm converges geometrically

Jr<l: |ul—us|+]|u-u-| = CT"

Analysis on the (relaxed) Jacobi algorithm
> GMRES algorithm in practice
> The GMRES solution will satisfy the same type of bound



Convergence result

(—A— k) u" = flo_ z
(y1+iTyo) u" = (y1 +iTyo) [rut+ 1 - )}
(—A—k*)u" = fla,

(y1—iTyo) u = (y1 —iTyo) [ru + 1 - r)u"7}]

THEOREM Ifr €(0,1) and T is a positive self-adjoint isomorphism
T: H"2®) — H'2(3)

then the iterative algorithm converges geometrically

Jr<l: |ul—us|+]|u-u-| = CT"

Stable convergence at the discrete level [Claeys Collino Joly P. 2019]
» if (T-,-) satisfies a uniform discrete inf-sup condition

» C and 7 independent of the discretization parameter h



Convergence result

(—A— k) u" = flo_ z
(y1+iTyo) u" = (y1 +iTyo) [rut+ 1 - )}
(—A—k*)u" = fla,

(y1—iTyo) u = (y1 —iTyo) [ru + 1 - r)u"7}]

THEOREM Ifr €(0,1) and T is a positive self-adjoint isomorphism
T: H"2®) — H'2(3)

then the iterative algorithm converges geometrically

Jr<l: |ul—us|+]|u-u-| = CT"

Can be extended to the electromagnetic setting

{}/ou = nx (uxn) € H-M2(3)

curl

yiu:= kK 'nxcurlu € H&i\l/z(Z)
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(including rational fractions) P e

. : : Alonso-Rodriguez Gerardo-Giorda 2006
> g
very efficient in practice Dolean Gander Gerardo-Giorda 2009

> no general analysis Rawatt Lee 2010
Dolean Gander Lanteri Lee Peng 2015
El Bouajaji Thierry Antoine Geuzaine 2015

Helmholtz:

Ghanemi 1996
Non-local operators Collino Ghanemi Joly 1998

> complete analysis _ Lecouvez 2015
> . Collino Joly Lecouvez 2020
geometric convergence Claeys Collino Joly P. 2020

||u:’_7u+||+||uffu_|| <Ct" 1<l Claeys P. 2020

Maxwell:

> stable after discretization Claeys Thierry Collino 2017

P. 2020




Dealing with cross-points



The cross-point issue: a motivating experiment

Non-local operators

> At the continuous level: the convergence proof fails [Collino Ghanemi Joly 2000]

> At the discrete level: unstable convergence

J=9
sub-domains

J=10
sub-domains

No cross-point With cross-point

10
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The Multi-Trace Formalism

Introduced in [Claeys Hiptmair 2013]
Paradigm shift: the traces are considered

no longer at each interface but rather at each sub-domain boundary

A new generalized exchange operator II is introduced [Claeys 2020]
> the continuity of the two traces y( and y; is now implicit

» II becomes non-local: rests on the resolution of a coercive problem on
the skeleton

> the skeleton problem can be solved in parallel with only neighboring
sub-domains exchanging data
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The Multi-Trace Formalism

Introduced in [Claeys Hiptmair 2013]
Paradigm shift: the traces are considered

no longer at each interface but rather at each sub-domain boundary

New approach vs standard approach: [Claeys P. 2020]
> formally similar: same interface problem
(Id-TIS)x=b
> true generalization: the local II is recovered in absence of cross-points

> complete convergence analysis: geometric rate, stability
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Design of suitable non-local transmission operators
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Definition of the transmission operator

Goal: construct a positive self-adjoint isomorphism such that
T: H2 ) - H V()

z
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Definition of the transmission operator

Goal: construct a positive self-adjoint isomorphism such that
T: H2 ) - H V()

Firstidea
> Integral operators from potential theory
Better idea

> Dissipative DtN operators
(Schur complement of the elliptic system)

(-A+k*)u=0 inQ_NQs

T ¢p:=
¢=nu {}/Ouz(p onXx

The domain of the auxiliary problem can be truncated
> Width 6 of the strip: only a few layers of elements can be used
Advantages

> Easy to implement
> Lead to augmented but sparse linear systems

> Efficient even with varying coefficients, rough boundaries. .. 15



Influence of the truncation parameter 6

T T T 1 171 ‘ T I I T TTT
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101 I Ll
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Influence of the truncation parameter 6

—o— Dirichlet

104

= 8 J
§ g —+— Neumann |
°© 10° E —=— Robin =
§ g -
£ 102} ]
s = e Fourier analysis
B i . Asd—0
1 I RN
10 10—2 101 > Dirichlet T — oo
Ratio §/A > Neumann T — 0

> RobinT —Id

Only a few layers of elements can be used
= Controlled computational cost with maintained efficiency
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Stability of the convergence

Iteration count

T T T
103 |-| —o— Després .
[| —— Schur L
71075 |
T -
+—t—
L] | L
10t 10? 103

Mesh refinement \/h

3D Maxwell problem — ball partitioned in 32 sub-domains — GMRES algorithm

= Stable convergence when using non-local operators

17



Conclusions

Our approach for DDM for time harmonic wave propagation problems
> use non-local operators in transmission conditions
to have theoretical guarantees of

> geometric convergence — extension to Maxwell
> discrete stability [Claeys Collino Joly P. 2020]
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Conclusions

Our approach for DDM for time harmonic wave propagation problems
> use non-local operators in transmission conditions
to have theoretical guarantees of

> geometric convergence — extension to Maxwell
> discrete stability [Claeys Collino Joly P. 2020]

New treatment of cross-points [Claeys P. 2020]

> based on a new non-local exchange operator
> that generalizes the standard approach

We advocate a particular well-suited non-local operator [Collino Joly P. 2021]

> generic definition, using fully local formulations (no dense matrices)
> robust: deals well with varying coefficients, rough boundaries

Thank you for your attention!
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