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Mathematical Model and Motivation

Wave propagation in lungs
Used in medical diagnostics.

Modelled by the 3D wave equation in a thin fractal network (see works by B.
Maury and co-workers)

A\
Figure: Cast of human lungs (photo by m fractal infinite 1D tree 7
Ewald Weibel, University of Bern) m asymptotic analysis of [Joly, Semin,

2008] when the branch width — 0
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Self-Similarity: Example (p-adic tree with p = 3)
i, ap, a3 < 1 length ratios 1, M2, p3 weight ratios

M, M,

OZ3CM1£

(infinitely many edges) (function s — p(s) on a tree)
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Self-Similarity: Example (p-adic tree with p = 3)

i, ap, a3 < 1 length ratios 1, M2, p3 weight ratios

M,

(infinitely many edges) (function s — p(s) on a tree)
Lung: p=2, a1 ~ ar =~ 0.84, u1 ~ px = 0.75 (Weibel '63)
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Self-Similarity: Example (p-adic tree with p = 3)

i, ap, a3 < 1 length ratios 1, M2, p3 weight ratios

M,

(infinitely many edges) (function s — p(s) on a tree)

1D PDE : 92u— 0?u=0 on each branch coupled with

t Continuity: u(M) = u;(M), j =1,2,3 in all vertices M
Iy Kirchoff: 0;u(M) =" pj0suj(M), in all vertices M
us J

A trivial example: p=1, pu; =1, a3 < 1: a 1D wave equation on an interval e



Boundary Conditions

Types of boundary conditions at 'infinity’

We will consider Neumann BCs
The BCs will be expressed variationally —>
associated Sobolev spaces
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Boundary Conditions

Types of boundary conditions at 'infinity’

We will consider Neumann BCs
The BCs will be expressed variationally —>
associated Sobolev spaces

k8

Variational Framework

m Square-integrable functions L7 on the tree T

Jully, = P = /u|u|2 > [ urluto)Pds < .

YeT 5

m Sobolev space H},: ue C(T), s.t

Julfy = Nl + [ ulowuf < oc.
T
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Boundary Conditions

Types of boundary conditions at 'infinity’

We will consider Neumann BCs
The BCs will be expressed variationally —>
associated Sobolev spaces

k8

Neumann (mixed) problem

V= {veHT): v(M.) =0}

ue 0, T V) : /,uasuasv+/,u8t2uv = /,ufv, forall ve V
T T

+ zero i.c.
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Difficulties and Objectives

The main objective
The tree is infinite = restrict computations to a structurally finite domain
Outline:

transparent boundary conditions for the infinite tree and reference DtN (PhD
of A. Semin (2010), P. Joly, MK, A. Semin, Netw. and Heter. Media 2019)

two methods for their approximation

m convolution quadrature
m local transparent BCs



Dirichlet-to-Neumann operators

m truncate the tree up to a level m = truncated tree 7"

m impose a transparent BC JIERIR="Z{@311} at the boundary of 7™ (excl. M,)

B(8¢, Mm,1) := B1(0) is a full-tree DtN
operator
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Dirichlet-to-Neumann operators

m truncate the tree up to a level m = truncated tree 7"

m impose a transparent BC JIERIR="Z{@311} at the boundary of 7™ (excl. M,)
LA L
jjmzj—% . Coupled formulation:

m10sU(Mm.1,t) = B(0t, Mm1)u(Mm1, t
e Find u € C2(0, T; HA(T™)), s.t. u(M.) = 0 and
™ ey
. 2
V. L /p@tuv+/u85u85v—
pa: A Al

m

P

- - L > " B(Oe, M) u( M j, t)v(Mpm ;) = /pfv,
jjﬁ« ﬂ j=1 m

Vv € HL(T™), with v(M,) = 0.

]
1 I

B(8¢, Mm,1) := B1(0) is a full-tree DtN
operator
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Dirichlet-to-Neumann operators

m truncate the tree up to a level m = truncated tree 7"

m impose a transparent BC JIERIR="Z{@311} at the boundary of 7™ (excl. M,)

e

. | )| .
" Coupled formulation:

*
m10sU(Mm.1,t) = B(0t, Mm1)u(Mm1, t
pmaOriMna &) = B0 Moo ) Find u € C2(0, T; HA(T™)), s.t. u(M.) = 0 and

T ﬂC;
M. WL . / pdiuv + /,uasuasv—
: Tm Tm
A p"
r AT > B0, M )M, (M) = [ f,
2T y j=1 T™

B(:, Mm1) := Bi(9:) is a full-tree DN~ Vv € Hy(T™), with v(M.) = 0.
operator

Main issues

m the operators B(0;) are convolution operators, non-local in time

m no closed form for their kernels or Fourier-Laplace transforms for the kernels



The reference DtN operator

Tm

Reference DtN:

N(Or)g(t): g = —0su(M,, t), where

1020 — ds(udsu) =0 on T,
u(My, t) = g(t),
u(M,,0) = d,u(M.,0) =0,  +b.c.

DtN as a Convolution Operator:

A(@0)z(t) = ,OfA(r )e(r)dr
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The reference DtN operator

Reference DtN:

N(Or)g(t): g = —0su(M,, t), where

. 1020 — ds(udsu) =0 on T,
B oM., ) = (o),
) u(M.,0) = B;u(M,,0) =0,  +bc.

DtN as a Convolution Operator:

A(@e)a(t) = fA(r )e(r)dr

z
\]
3
1 x

FNGEENERY: | (Fg)(w) = fe iwto(£)dt | IESTHLEE: A(w) = FA(w)
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The reference DtN operator

Reference DtN:

kL N0:)g(t): g — —0su(M,, t), where
Mm,k }gm,kl : /Jafu — 85(/1,65[]) — 0 on T,
Tm : u(M,, t) = g(t),

| u(M,,0) = d,u(M,,0) =0,  +b.c.

e DtN as a Convolution Operator:

DOON A(Dy)z(t) = ft/\(t —7)g(r)dT

| Fourier-Laplace [IOZSIE fe wig(t)dt | BEUEIE: Aw) == FA(w)

Using the scaling argument+Kirchoff conditions (see Joly, MK, Semin '19)

P
B(LI.J7 Mm,k) = — Z %I\(akf,ﬂ,kw).
k= m

Conclusion: it suffices to be able to approximate the reference DtN operator.
7/26



The reference DtN operator: Characterization 1

Compact embedding
The embedding of H), into L7, is compact.

Remark: we consider the case o; < 1 for all /.
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The reference DtN operator: Characterization 1

Compact embedding

The embedding of H), into L7, is compact.
Remark: we consider the case a; < 1 for all i.

This means that the spectrum of —u~'0s(uds) on V := {v € H}, : v(0) = 0} is discrete:

Eigenvalues:

0<w?<w?<...— 400,
— 117 0s(110s) b = wihn, ||nll = 1.

Corresponding eigenfunctions:
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The reference DtN operator: Characterization 1

Compact embedding

The embedding of H), into L7, is compact.
Remark: we consider the case «; < 1 for all /.

This means that the spectrum of —u~'0s(uds) on V := {v € H}, : v(0) = 0} is discrete:

Eigenvalues: 0<w?<ws<...— 400,

— 117 0s(110s) b = wihn, ||nll = 1.

Corresponding eigenfunctions:

Corollary

The reference DtN operator A(w) is a meromorphic function in C analytic in B<(0).
Moreover,

2

I\(w) /\(0) Z (a ¢n(0)) w

Wn2 _ w2'
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The reference DtN operator: Characterization 1

Compact embedding

The embedding of H), into L7, is compact.
Remark: we consider the case «; < 1 for all /.

This means that the spectrum of —u~'0s(uds) on V := {v € H}, : v(0) = 0} is discrete:

Eigenvalues: 0<w?<ws<...— 400,

— 117 0s(110s) b = wihn, ||nll = 1.

Corresponding eigenfunctions:

Corollary

The reference DtN operator A(w) is a meromorphic function in C analytic in B<(0).
Moreover,

2

I\(w) /\(0) Z (a ¢n(0)) w

Wn2 _ w2'

Problem: computing the eigenvalues and eigenfunctions is expensive!
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The reference DtN operator: Characterization 2

The non-linear equation defining the DtN

P
> Z—’;I\(akw) —wtanw
k=1

Nw) = (E)

P
I+wtanw )5 LA (uw)
k=1
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The reference DtN operator: Characterization 2

The non-linear equation defining the DtN

P
> Z—’;I\(akw) —wtanw
k=1

Nw) = (E)

P
I+wtanw )5 LA (uw)
k=1

Restriction of the set of the solutions

Given A(0) (computable, DtN for Laplace eq.), the even solution to (E) analytic in 0 is
unique.
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The reference DtN operator: Characterization 2

The non-linear equation defining the DtN

P
> Z—’;I\(akw) —wtanw
Aw) = —= 5 (E)
I+wtanw )5 LA (uw)
k=1

Restriction of the set of the solutions

Given A(0) (computable, DtN for Laplace eq.), the even solution to (E) analytic in 0 is
unique.

Solution algorithm

m knowing A(oyw), ax <1 = A(w)



The reference DtN operator: Characterization 2

The non-linear equation defining the DtN

p
> HENauw) —wtanw
Aw) = —= 5 (E)
1+wltanw > Z—Zl\(akw)
k=1

Restriction of the set of the solutions

Given A(0) (computable, DtN for Laplace eq.), the even solution to (E) analytic in 0 is
unique.

Solution algorithm
m knowing A(oyw), ax <1 = A(w)

m A for |w| < r can be found from the truncated Laurent series (computable)
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Coupled formulation

NPANGS

X X
3 g
v X

Osu(Mm 1, t) = B(0t, Mim1)u(Mm1, t)

B(8¢, Mm,1) := B1(0) is a full-tree DtN
operator

P
B(w, Mm,k) = — Z M/\(Otkﬂ,»,,’k(/.)).
k=1

alm,k

Coupled formulation:

Find u € C*(0, T; H.(T™)), s.t. u(M.) =0 and

/,ué‘fuv—i—/,uasuasv—

Tm Tm

p™
7 B(0t Mung) (M, £)v( M) = / Jifo,

=1 Fm

Vv € HL(T™), with v(M,) = 0.
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Coupled formulation

p
L X e B(wv Mm,k) = - Z %A(akem,kw)'
JJM,ML[ k=1

=

X< .
Bst(Mim 1, t) = B(8t, M1 )u(Mim 1, £) Coupled formulation:

Find u € C*(0, T; H.(T™)), s.t. u(M.) =0 and

/,ué‘fuv—i—/,uasuasv—

Tm Tm

m

P
> B0, M )M, O (M) = [ f,

=1 Fm

B(8¢, Mm,1) := B1(0) is a full-tree DtN

operator Vv € HL(T™), with v(M,) = 0.

Computing time-domain convolutions B(9:)u

m convolution quadrature (Ch. Lubich '88)

m local transparent BCs
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Convolution quadrature (CQ)

t
Ch. Lubich, 1988: discretize [ K(t — 7)u(r)dT with multistep (RK) solvers
0
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Convolution quadrature (CQ)

t

Ch. Lubich, 1988: discretize [ K(t — 7)u(7)dT with multistep (RK) solvers
0

Trapezoid CQ applied to the construction of transparent BCs

m semi-discretize the original problem in time with the 6-scheme (6 = %)

un+1 — oy + unfl " "
p———r 5 — Os(n0s{u = pf”,
A (10s{u"}1/) ©)

u"(M,) =0, W =u' =0, (+b.c).

Here u” ~ u(., nAt),
{0 hye =5 (" 20"+ ")
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Convolution quadrature (CQ)

t

Ch. Lubich, 1988: discretize [ K(t — 7)u(7)dT with multistep (RK) solvers
0

Trapezoid CQ applied to the construction of transparent BCs

m semi-discretize the original problem in time with the 6-scheme (6 = %)

un+1 — oy + unfl " "
MW — Os(p0s{u }1/4) = uf",

u"(M,) =0, W =u' =0, (+b.c).

Here u” ~ u(., nAt),
{0 hye =5 (" 20"+ ")

m construct exact reference DtN Ax;, and the DtNs BjAt for the semi-discrete (D).
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Computing Aa:

Continuous problem | Semi-discrete problem

21—z
Atl+z
————
—iw+O((At)?)

—iw (~ O) z = ™At Fourijer of a shift
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Computing Aa:

Continuous problem

Semi-discrete problem

—iw (~ 0¢)

A(w)

21—z
Atl+z
————
—iw+O((At)?)

2i 1—z
A At 1+z

z = e/“At Fourier of a shift

= Nae(2)
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Computing Aa:

Continuous problem | Semi-discrete problem

21—z
Atl+z
————
—iwtrO((AL)?)
Aw) A (% }%) = Ani(2)

From frequency domain to time domain

Step 1. Define convolution weights A2t (Aa¢(2) is analytic for |z| < 1):

- 1
Ap: (2) = Z NtZh o \At = / Aa:(2)z 7 Ftdz.
k=0

27
28B(0,p)

—iw (~ O) z = ™At Fourijer of a shift

computable
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Computing Aa:

Continuous problem | Semi-discrete problem

21— .
—iw (~ O) A_tl+_§ z = ™At Fourijer of a shift

—_——
—iw+O((A1)2)

A(w) A(Z2 = Nae(2)

From frequency domain to time domain

Step 1. Define convolution weights A2t (Aa¢(2) is analytic for |z| < 1):
oo 1 e
Aa:(z) = Z AQtZh o \At = 5 / Ap:(2)z7 % dz.
k=0 88(0,p)

computable

/0 At — )dr | = FUAW) Fe)(0):

Step 2. Discretization of
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Computing Aa:
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Computing Aa:

Continuous problem | Semi-discrete problem

21— .
—iw (~ O) A_tl+_§ z = ™At Fourijer of a shift

—_——
—iw+O((A1)2)

A(w) A(Z2 = Nae(2)

From frequency domain to time domain

Step 1. Define convolution weights A2t (Aa¢(2) is analytic for |z| < 1):
oo 1 e
Aa:(z) = Z AQtZh o \At = 5 / Ap:(2)z7 % dz.
k=0 88(0,p)

computable

/0 At — )dr | = FUAW) Fe)(0):

Step 2. Discretization of

F L (Nael2)Fg) (1) = Y AF (kB Fg) (1) = | S ALig(t — kAt)
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Coupled formulation

[ @2y + [ noudum oy = SUBE G (M) bjav (M) = [ i v.
J

Tm Tm Tm

13/26



Coupled formulation

Implicit form

[ @2y + [ noudum oy = SUBE G (M) bjav (M) = [ i v.
J

Tm Tm Tm

Stability of the coupled formulation

t
For the continuous formulation the stability is ensured by [ A(8;)udyu > 0.
0

1 k—1

n
H P k u
Discrete formulation: Atkao{/\mu }1/4 L >0
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Coupled formulation

Implicit form

[ @2y + [ noudum oy = SUBE G (M) bjav (M) = [ i v.
J

Tm Tm Tm

Stability of the coupled formulation

t
For the continuous formulation the stability is ensured by [ A(8;)udyu > 0.
0

1 k—1

n
. . B ukHL k=
Discrete formulation: Atkgo{/\mu }1/4 L >0

After the space discretization:

[ e+ [ dkuov — S (52 M)y jovs(Mns) = [ v
Tm Tm J Tm

The stability is ensured under the classical CFL condition.

Complexity: evaluating {B5'u"}1/4v is of O(n) => O(N?) for O(N) time steps

13/26



Numerical experiments

Tree parameters

a; = 0.4, ap = 0.3, ug3 =1 and pp = 0.3. Neumann case.

h(t—z) S

e @ — i

Dirichlet data: u(M,,t) = h(t) = e=5%(t=1)° Cutoff after 3 generations.
Reference solution: on 7™ with m large

14 /26



Convolution Quadrature

10 ———  Reference [ 1+ ——  Reference
—— CQ At =0.04 —— CQ At = 0.002
0.5 * 0.5 R
3 3

0 0

! ! ! ! ! ! ! !

0 2 4 6 8 10 0 2 4 6 8 10
t t

Remark: Computational times (including pre-computations): ~ 1 — 2 mins for

truncated problems; ~ 10h for reference
15 /26



Coupled formulation

p
L X e B(wv Mm,k) = - Z %A(akem,kw)'
JJM,ML[ k=1

=

X< .
Bst(Mim 1, t) = B(8t, M1 )u(Mim 1, £) Coupled formulation:

Find u € C*(0, T; H.(T™)), s.t. u(M.) =0 and

/,ué‘fuv—i—/,uasuasv—

Tm Tm

m

P
> B0, M )M, O (M) = [ f,

=1 Fm

B(8¢, Mm,1) := B1(0) is a full-tree DtN

operator Vv € HL(T™), with v(M,) = 0.

Computing time-domain convolutions B(9:)u

m convolution quadrature (Ch. Lubich '88)

m local transparent BCs

16/26



Local transparent BCs

- w? (85¢n(0))2
AN =N0) =S ap——, gy = 0]
@)= A0 =D o %
= d\,
/\6 :AO n )
(@90 = MO + 3 25

d? 5
FA" + wn)\,, =

d d
—_— = — = < .
" An(0) dt)x,,(O) 0, 0<n<ow
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Local transparent BCs

ST GV ()
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Local transparent BCs

oo wz . 2
A(w) = N(0) — Zanm, = —(3s¢ (0)) .

n=0

Time-domain realization of the reference DtN operator

d d d
— A+ WAy = —v, An(0) = —X,(0)=0, 0< .
e + wy s (0) p (0)=0, 0<n<oo
N—-1
d\
An(8:)v = NO)v + ; and—t",
d? ) d d
F)\n —i—wn)\n = EV, )\n(O) = E)\,-,(O) = 07 0 <n< N —1.

Implementation: a, and w? via the residue theorem--contour integration

17/26



Approximating transparent boundary conditions

NYSE P
L

o :1
0su(Mm,1, t) = B(Or, M, 1)u(

I

ml,t)

The 'outer’ boundary of 7™:
{Mm,j7 J = 17 et )pm}'

Transparent boundary conditions

B(at, M) = — Z Biclm, k/\(Oékem kBt) —
k=

lm,k

Bn(0:y, M) = — Z L kAN(akem «Or)
k=1

aylpm,

For brevity: B;j(0;) := B(0¢, Mm ).

Uniform in N stability: energy analysis (2, > 0 in A(w) =

x> 2
I\(O) — Z:o anﬁ)
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Error

Error analysis

up solution with By on T, u exact. For ey := uy — u:

9een(., t)ll7m + [9sen(, t)ll7m < Ctlldeullwario,eiz) D (Debn(0))wn "

n=N
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Error

Error analysis

up solution with By on T, u exact. For ey := uy — u:

9een(., t)ll7m + [9sen(, t)ll7m < Ctlldeullwario,eiz) D (Debn(0))wn "

3
=3

Goal

Find N s.t. fj (0s6n(0))?w, * < &

n=N

Reminder

w,? are eigenvalues of —u~'9,(uds) on V := {v € H} : v(0) =0},
¢n are the corresponding eigenfunctions
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Error

Error analysis

up solution with By on T, u exact. For ey := uy — u:

9een(., t)ll7m + [9sen(, t)ll7m < Ctlldeullwario,eiz) D (Debn(0))wn "

n=N

Goal

Find N s.t. fj (0s6n(0))?w, * < &

=N

3
|

Reminder

w,? are eigenvalues of —u~'9,(uds) on V := {v € H} : v(0) =0},
¢n are the corresponding eigenfunctions

What does not work

Bound |9:¢,(0)| and w, for every n (bounding convergent series by a non-convergent
one)

19/26



An alternative idea

o0

Find M- st > (0s¢n(0))°w,* < e

n=N.

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

> (8:¢n(0))* < WA

wpt lwp—W|<n

(W—n| ~[W+n]

w
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An alternative idea

Find M. st. 3) (0s0n(0))?w, * < &
N,

n=Ng

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

> (8:¢n(0))* < WA

wpt lwp—W|<n

The estimate does not depend on the number of w, on the interval (W —n, W +n)
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An alternative idea

Find M. st. 3) (0s0n(0))?w, * < &
N,

n=Ng

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

> (8:¢n(0))* < WA

wpt lwp—W|<n

Changing the point of view
> (9:0n(0)) w0,

wp2>N

20/26



An alternative idea

Find N s.t. Z (0s0n(0))?w, * < &

n=N.

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

> (8:¢n(0))* < WA

wpt lwp—W|<n

> (9s¢n(0))w, * < Z > (9:¢n(0) 2w,

wp2>N k= N|w,,—k\§1

k—3 k+1
| I ‘ I ‘ I : I :
N k-1 Kk k+1 k+2
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An alternative idea

Find N s.t. Z (0s0n(0))?w, * < &

n=N.

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]
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An alternative idea

Goal
Find N s.t. fj (0s0n(0))?w, * < &

n=N.

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]
S @0n0)) < GWA

wpt lwp—W|<n

Changing the point of view

PORCEIO)SERED I SERCEN()
s
(0s6n(0) < €Y 15K <
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wp2>N
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531D
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How is N related to ¢

Goal (N plays a role in the complexity estimate)
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Goal (N plays a role in the complexity estimate)
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Find M- s.t. (8sn(0))?wy* < &
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n=Ng

Self-similarity dimension :

N = #{w, : wy, < 5_1}

p—1
d, € (0,00): Y af =1
k=0

(ds <1 <= total length < o0)
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Numerical experiments

Tree parameters

a; = 0.4, ap = 0.3, ug3 =1 and pp = 0.3. Neumann case.

h(t—z) S

e @ — i

Dirichlet data: u(M,,t) = h(t) = e=5%(t=1)° Cutoff after 3 generations.
Reference solution: on 7™ with m large.
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Rational Function Conditions: Increasing Accuracy

1 ——  Reference [ 1 ———  Reference
Rational L =2 Rational L =5
0.5 N 0.5 n
3 3
0 0
! ! ! ! ! ! ! !
0 2 4 6 8 10 0 2 4 6 8 10

23/26



Rational Function Conditions: Increasing Accuracy

1 ——  Reference [ 1 ———  Reference
Rational L =5 Rational L =10
05| s 0.5 .
3 3
0 0
! ! ! ! ! ! ! !
0 2 4 6 8 10 0 2 4 6 8 10

24/26



Rational Function Conditions:

0.5

Reference
Rational L =10

Increasing Accuracy
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Prospectives and future work

m Improved convergence of Local Transparent BCs
m Kirchoff-like conditions accounting for angles between junctions

m BCs accounting for the interaction of the bronchioli with
alveoli/lung tissue

Thank you for your attention!
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