Transparent boundary conditions for wave propagation in fractal trees

Patrick Joly, Maryna Kachanovska

POEMS (UMR INRIA-CNRS-ENSTA), INRIA, IP Paris

SMAI 2021

Mathematical Model and Motivation

Wave propagation in lungs

Used in medical diagnostics.

Modelled by the **3D wave equation in a thin fractal network** (see works by B. Maury and co-workers)

Figure: Cast of human lungs (photo by Ewald Weibel, University of Bern)

- fractal infinite 1D tree \mathcal{T}
- asymptotic analysis of [Joly, Semin, 2008] when the branch width $\rightarrow 0$

$$\mu \partial_t^2 \mathbf{u} - \partial_s (\mu \partial_s \mathbf{u}) = 0 \qquad 2/2$$

 $\alpha_1, \alpha_2, \alpha_3 < 1$ length ratios

 μ_1, μ_2, μ_3 weight ratios

 $(\text{infinitely many edges}) \quad (\text{function } s \mapsto \mu(s) \text{ on a tree})$

(infinitely many edges) (function $s \mapsto \mu(s)$ on a tree) Lung: p = 2, $\alpha_1 \approx \alpha_2 \approx 0.84$, $\mu_1 \approx \mu_2 \approx 0.75$ (Weibel '63)

 $\alpha_1, \alpha_2, \alpha_3 < 1$ length ratios μ_1, μ_2, μ_3 weight ratios $\mu_{3}\nu$ $\mu_1 \nu$ (infinitely many edges) (function $s \mapsto \mu(s)$ on a tree) The model (*u* is an acoustic pressure): $\partial_s(\mu \partial_s u) - \mu \partial_t^2 u = 0$ 1D PDE : $\partial_{\epsilon}^2 u - \partial_{t}^2 u = 0$ on each branch coupled with

Continuity: $u(M) = u_j(M)$, j = 1, 2, 3 in all vertices M**Kirchoff:** $\partial_s u(M) = \sum_i \mu_j \partial_s u_j(M)$, in all vertices M

 $\alpha_1, \alpha_2, \alpha_3 < 1$ length ratios μ_1, μ_2, μ_3 weight ratios $\mu_3 \nu$ $\mu_1 \nu$ (infinitely many edges) (function $s \mapsto \mu(s)$ on a tree) The model (*u* is an acoustic pressure): $\partial_s(\mu \partial_s u) - \mu \partial_t^2 u = 0$ 1D PDE : $\partial_s^2 u - \partial_t^2 u = 0$ on each branch coupled with U_1 **Continuity:** $u(M) = u_i(M)$, j = 1, 2, 3 in all vertices M **Kirchoff:** $\partial_s \boldsymbol{u}(M) = \sum_i \mu_j \partial_s \boldsymbol{u}_j(M)$, in all vertices MA trivial example: ${\it p}=$ 1, $\mu_1=$ 1, $lpha_1<$ 1: a 1D wave equation on an interval 3 / 26

Boundary Conditions

Types of boundary conditions at 'infinity'

We will consider Neumann BCs The BCs will be expressed variationally \implies associated Sobolev spaces

Boundary Conditions

Types of boundary conditions at 'infinity'

We will consider Neumann BCs The BCs will be expressed variationally \implies associated Sobolev spaces

Variational Framework

• Square-integrable functions L^2_{μ} on the tree \mathcal{T} : $\|\boldsymbol{u}\|^2_{L^2_{\mu}} = \|\boldsymbol{u}\|^2 = \int_{\mathcal{T}} \mu |\boldsymbol{u}|^2 = \sum_{\Sigma \in \mathcal{T}} \int_{\Sigma} \mu_{\Sigma} |\boldsymbol{u}(s)|^2 ds < \infty.$

Sobolev space H^1_{μ} : $u \in C(\mathcal{T})$, s.t.

$$\|\boldsymbol{u}\|_{H^1_\mu}^2 = \|\boldsymbol{u}\|_{L^2_\mu}^2 + \int_{\mathcal{T}} \mu |\partial_{\boldsymbol{s}}\boldsymbol{u}|^2 < \infty.$$

Boundary Conditions

Types of boundary conditions at 'infinity'

We will consider Neumann BCs The BCs will be expressed variationally \implies associated Sobolev spaces

Neumann (mixed) problem

$$V := \{ v \in H^1_{\mu}(\mathcal{T}) : v(M_*) = 0 \}$$
$$u \in C^2((0, T]; V) : \int_{\mathcal{T}} \mu \partial_s u \partial_s v + \int_{\mathcal{T}} \mu \partial_t^2 u v = \int_{\mathcal{T}} \mu f v, \quad \text{for all } v \in V$$

+ zero i.c.

The main objective

The tree is infinite \implies restrict computations to a structurally finite domain

Outline:

- I transparent boundary conditions for the infinite tree and reference DtN (PhD of A. Semin (2010), P. Joly, MK, A. Semin, Netw. and Heter. Media 2019)
- 2 two methods for their approximation
 - convolution quadrature
 - local transparent BCs

Dirichlet-to-Neumann operators

- truncate the tree up to a level $m \implies$ truncated tree \mathcal{T}^m
- impose a transparent BC $\mu \partial_s u = B(\partial_t) u$ at the boundary of \mathcal{T}^m (excl. M_*)

 $B(\partial_t, M_{m,1}) := B_1(\partial_t)$ is a full-tree DtN operator

Dirichlet-to-Neumann operators

- truncate the tree up to a level $m \implies$ truncated tree \mathcal{T}^m
- impose a transparent BC $\mu \partial_s u = B(\partial_t) u$ at the boundary of \mathcal{T}^m (excl. M_*)

 $B(\partial_t, M_{m,1}) := B_1(\partial_t)$ is a full-tree DtN operator

Coupled formulation:

Find $\mathbf{u} \in C^2(0, \mathcal{T}; H^1_\mu(\mathcal{T}^m))$, s.t. $\mathbf{u}(M_*) = 0$ and

$$\int_{\mathcal{T}^m} \mu \partial_t^2 u v + \int_{\mathcal{T}^m} \mu \partial_s u \partial_s v - \sum_{j=1}^{p^m} B(\partial_t, M_{m,j}) u(M_{m,j}, t) v(M_{m,j}) = \int_{\mathcal{T}^m} \mu f v,$$

$$\forall v \in H^1_\mu(\mathcal{T}^m)$$
, with $v(M_*) = 0$.

Dirichlet-to-Neumann operators

- truncate the tree up to a level $m \implies$ truncated tree \mathcal{T}^m
- impose a transparent BC $\mu \partial_s u = B(\partial_t) u$ at the boundary of \mathcal{T}^m (excl. M_*)

 $B(\partial_t, M_{m,1}) := B_1(\partial_t)$ is a full-tree DtN operator

Coupled formulation:

Find
$$oldsymbol{u}\in C^2(0,\,\mathcal{T};\,\mathcal{H}^1_\mu(\mathcal{T}^m))$$
, s.t. $oldsymbol{u}(M_*)=0$ and

$$\int_{\mathcal{T}^m} \mu \partial_t^2 u v + \int_{\mathcal{T}^m} \mu \partial_s u \partial_s v -$$
$$\sum_{j=1}^{p^m} B(\partial_t, M_{m,j}) u(M_{m,j}, t) v(M_{m,j}) = \int_{\mathcal{T}^m} \mu f v,$$

$$\forall v \in H^1_\mu(\mathcal{T}^m)$$
, with $v(M_*) = 0$.

Main issues

- the operators $B(\partial_t)$ are **convolution** operators, **non-local** in time
- no closed form for their kernels or Fourier-Laplace transforms for the kernels

The reference DtN operator

Reference DtN:

$$\begin{split} \Lambda(\partial_t)g(t) &: g \to -\partial_s u(M_*, t), \text{ where} \\ \mu \partial_t^2 u - \partial_s(\mu \partial_s u) &= 0 \text{ on } \mathcal{T}, \\ u(M_*, t) &= g(t), \\ u(M_*, 0) &= \partial_t u(M_*, 0) = 0, \end{split}$$

DtN as a Convolution Operator: $\Lambda(\partial_t)g(t) \equiv \int_0^t \lambda(t-\tau)g(\tau)d\tau$

The reference DtN operator

Reference DtN:

The reference DtN operator

Reference DtN:

Using the scaling argument+Kirchoff conditions (see Joly, MK, Semin '19)

$$\boldsymbol{B}(\omega,\boldsymbol{M}_{m,k}) = -\sum_{k=1}^{p} \frac{\mu_{k}\mu_{m,k}}{\alpha_{k}\ell_{m,k}} \boldsymbol{\Lambda}(\alpha_{k}\ell_{m,k}\omega).$$

Conclusion: it suffices to be able to approximate the reference DtN operator.

Compact embedding

The embedding of H^1_{μ} into L^2_{μ} is **compact**.

Remark: we consider the case $\alpha_i < 1$ for all *i*.

Compact embedding

The embedding of H^1_{μ} into L^2_{μ} is **compact**.

Remark: we consider the case $\alpha_i < 1$ for all *i*.

This means that the spectrum of $-\mu^{-1}\partial_s(\mu\partial_s)$ on $V := \{v \in H^1_\mu : v(0) = 0\}$ is discrete:

Eigenvalues: Corresponding eigenfunctions:

$$\begin{split} 0 &< \omega_1^2 \leq \omega_2^2 \leq \ldots \rightarrow +\infty, \\ -\mu^{-1} \partial_s(\mu \partial_s) \phi_n &= \omega_n^2 \phi_n, \ \|\phi_n\| = 1. \end{split}$$

Compact embedding

The embedding of H^1_{μ} into L^2_{μ} is **compact**.

Remark: we consider the case $\alpha_i < 1$ for all *i*.

This means that the spectrum of $-\mu^{-1}\partial_s(\mu\partial_s)$ on $V := \{v \in H^1_\mu : v(0) = 0\}$ is discrete:

Eigenvalues: Corresponding eigenfunctions:

$$\begin{split} 0 &< \omega_1^2 \leq \omega_2^2 \leq \ldots \rightarrow +\infty, \\ -\mu^{-1} \partial_s(\mu \partial_s) \phi_n &= \omega_n^2 \phi_n, \ \|\phi_n\| = 1. \end{split}$$

Corollary

The reference DtN operator $\Lambda(\omega)$ is a meromorphic function in \mathbb{C} analytic in $\mathcal{B}_{\varepsilon}(0)$. Moreover,

$$\Lambda(\omega) = \Lambda(0) - \sum_{n=0}^{\infty} \frac{(\partial_s \phi_n(0))^2}{\omega_n^2} \frac{\omega^2}{{\omega_n}^2 - \omega^2}.$$

Compact embedding

The embedding of H^1_{μ} into L^2_{μ} is **compact**.

Remark: we consider the case $\alpha_i < 1$ for all *i*.

This means that the spectrum of $-\mu^{-1}\partial_s(\mu\partial_s)$ on $V := \{v \in H^1_\mu : v(0) = 0\}$ is discrete:

Eigenvalues: Corresponding eigenfunctions:

$$\begin{split} 0 &< \omega_1^2 \leq \omega_2^2 \leq \ldots \rightarrow +\infty, \\ -\mu^{-1} \partial_s(\mu \partial_s) \phi_n &= \omega_n^2 \phi_n, \ \|\phi_n\| = 1. \end{split}$$

Corollary

The reference DtN operator $\Lambda(\omega)$ is a meromorphic function in \mathbb{C} analytic in $\mathcal{B}_{\varepsilon}(0)$. Moreover,

$$\Lambda(\omega) = \Lambda(0) - \sum_{n=0}^{\infty} \frac{(\partial_s \phi_n(0))^2}{\omega_n^2} \frac{\omega^2}{\omega_n^2 - \omega^2}.$$

Problem: computing the eigenvalues and eigenfunctions is expensive!

$$\boldsymbol{\Lambda}(\omega) = \frac{\sum\limits_{k=1}^{p} \frac{\mu_{k}}{\alpha_{k}} \boldsymbol{\Lambda}(\alpha_{k}\omega) - \omega \tan \omega}{1 + \omega^{-1} \tan \omega \sum\limits_{k=1}^{p} \frac{\mu_{k}}{\alpha_{k}} \boldsymbol{\Lambda}(\alpha_{k}\omega)}$$

(E)

$$\boldsymbol{\Lambda}(\omega) = \frac{\sum\limits_{k=1}^{p} \frac{\mu_{k}}{\alpha_{k}} \boldsymbol{\Lambda}(\alpha_{k}\omega) - \omega \tan \omega}{1 + \omega^{-1} \tan \omega \sum\limits_{k=1}^{p} \frac{\mu_{k}}{\alpha_{k}} \boldsymbol{\Lambda}(\alpha_{k}\omega)}$$
(E)

Restriction of the set of the solutions

Given $\Lambda(0)$ (computable, DtN for Laplace eq.), the even solution to (E) analytic in 0 is unique.

$$\boldsymbol{\Lambda}(\omega) = \frac{\sum\limits_{k=1}^{p} \frac{\mu_{k}}{\alpha_{k}} \boldsymbol{\Lambda}(\alpha_{k}\omega) - \omega \tan \omega}{1 + \omega^{-1} \tan \omega \sum\limits_{k=1}^{p} \frac{\mu_{k}}{\alpha_{k}} \boldsymbol{\Lambda}(\alpha_{k}\omega)}$$
(E)

Restriction of the set of the solutions

Given $\Lambda(0)$ (computable, DtN for Laplace eq.), the even solution to (E) analytic in 0 is unique.

Solution algorithm

• knowing $\Lambda(\alpha_k \omega), \, \alpha_k < 1 \implies \Lambda(\omega)$

$$\boldsymbol{\Lambda}(\omega) = \frac{\sum\limits_{k=1}^{p} \frac{\mu_{k}}{\alpha_{k}} \boldsymbol{\Lambda}(\alpha_{k}\omega) - \omega \tan \omega}{1 + \omega^{-1} \tan \omega \sum\limits_{k=1}^{p} \frac{\mu_{k}}{\alpha_{k}} \boldsymbol{\Lambda}(\alpha_{k}\omega)}$$
(E)

Restriction of the set of the solutions

Given $\Lambda(0)$ (computable, DtN for Laplace eq.), the even solution to (E) analytic in 0 is unique.

Solution algorithm

• knowing $\Lambda(\alpha_k \omega), \, \alpha_k < 1 \implies \Lambda(\omega)$

A for $|\omega| < r$ can be found from the truncated **Laurent** series (computable)

 $B(\partial_t, M_{m,1}) := B_1(\partial_t)$ is a full-tree DtN operator

$$\mathbf{B}(\omega, M_{m,k}) = -\sum_{k=1}^{p} \frac{\mu_k \mu_{m,k}}{\alpha_k \ell_{m,k}} \mathbf{\Lambda}(\alpha_k \ell_{m,k} \omega).$$

Coupled formulation:

Find ${\color{black}{u}}\in C^2(0,\,\mathcal{T};H^1_\mu(\mathcal{T}^m)),$ s.t. ${\color{black}{u}}(M_*)=0$ and

$$\int_{\mathcal{T}^m} \mu \partial_t^2 \mathbf{u} \mathbf{v} + \int_{\mathcal{T}^m} \mu \partial_s \mathbf{u} \partial_s \mathbf{v} - \sum_{j=1}^{p^m} B(\partial_t, M_{m,j}) \mathbf{u}(M_{m,j}, t) \mathbf{v}(M_{m,j}) = \int_{\mathcal{T}^m} \mu f \mathbf{v},$$

$$orall v \in H^1_\mu(\mathcal{T}^m)$$
, with $v(M_*)=0.$

$$\boldsymbol{B}(\omega, \boldsymbol{M}_{m,k}) = -\sum_{k=1}^{p} \frac{\mu_{k} \mu_{m,k}}{\alpha_{k} \ell_{m,k}} \boldsymbol{\Lambda}(\alpha_{k} \ell_{m,k} \omega).$$

Coupled formulation:

Find ${\color{black}{u}}\in C^2(0,\,\mathcal{T};\,\mathcal{H}^1_\mu(\mathcal{T}^m)),\, ext{s.t.}\,\,{\color{black}{u}}(M_*)=0$ and

$$\int_{\mathcal{T}^m} \mu \partial_t^2 \mathbf{u} \mathbf{v} + \int_{\mathcal{T}^m} \mu \partial_s \mathbf{u} \partial_s \mathbf{v} - \sum_{j=1}^{p^m} B(\partial_t, M_{m,j}) \mathbf{u}(M_{m,j}, t) \mathbf{v}(M_{m,j}) = \int_{\mathcal{T}^m} \mu f \mathbf{v},$$

 $B(\partial_t, M_{m,1}) := B_1(\partial_t)$ is a full-tree DtN operator

$$\forall v \in H^1_\mu(\mathcal{T}^m)$$
, with $v(M_*) = 0$.

Computing time-domain convolutions $B(\partial_t)u$

- convolution quadrature (Ch. Lubich '88)
- local transparent BCs

$$\boldsymbol{B}(\omega, \boldsymbol{M}_{m,k}) = -\sum_{k=1}^{p} \frac{\mu_{k}\mu_{m,k}}{\alpha_{k}\ell_{m,k}} \boldsymbol{\Lambda}(\alpha_{k}\ell_{m,k}\omega).$$

Coupled formulation:

Find ${\color{black}{u}}\in C^2(0,\,\mathcal{T};H^1_\mu(\mathcal{T}^m)),$ s.t. ${\color{black}{u}}(M_*)=0$ and

$$\int_{\mathcal{T}^m} \mu \partial_t^2 \mathbf{u} \mathbf{v} + \int_{\mathcal{T}^m} \mu \partial_s \mathbf{u} \partial_s \mathbf{v} - \sum_{j=1}^{p^m} B(\partial_t, M_{m,j}) \mathbf{u}(M_{m,j}, t) \mathbf{v}(M_{m,j}) = \int_{\mathcal{T}^m} \mu f \mathbf{v},$$

 $B(\partial_t, M_{m,1}) := B_1(\partial_t)$ is a full-tree DtN operator

$$\forall v \in H^1_\mu(\mathcal{T}^m)$$
, with $v(M_*) = 0$.

Computing time-domain convolutions $B(\partial_t)u$

- convolution quadrature (Ch. Lubich '88)
- local transparent BCs

Ch. Lubich, 1988: discretize $\int_{0}^{t} \mathcal{K}(t-\tau)u(\tau)d\tau$ with multistep (RK) solvers

Ch. Lubich, 1988: discretize $\int_{0}^{t} \mathcal{K}(t-\tau)u(\tau)d\tau$ with multistep (RK) solvers Trapezoid CQ applied to the construction of transparent BCs Ch. Lubich, 1988: discretize $\int_{0}^{t} \mathcal{K}(t-\tau)u(\tau)d\tau$ with multistep (RK) solvers Trapezoid CQ applied to the construction of transparent BCs

semi-discretize the original problem in time with the θ -scheme $(\theta = \frac{1}{4})$

$$\mu \frac{u^{n+1} - 2u^n + u^{n-1}}{(\Delta t)^2} - \partial_s(\mu \partial_s \{ u^n \}_{1/4}) = \mu f^n,$$

$$u^n(M_*) = 0, \qquad u^0 = u^1 = 0, \ (+b.c.).$$
 (D)

Here $u^n \sim u(., n\Delta t)$, $\{u^n\}_{1/4} = \frac{1}{4} (u^{n+1} + 2u^n + u^{n-1})$ Ch. Lubich, 1988: discretize $\int_{0}^{t} \mathcal{K}(t-\tau)u(\tau)d\tau$ with multistep (RK) solvers Trapezoid CQ applied to the construction of transparent BCs

semi-discretize the original problem in time with the θ -scheme $(\theta = \frac{1}{4})$

$$\mu \frac{\boldsymbol{u}^{n+1} - 2\boldsymbol{u}^n + \boldsymbol{u}^{n-1}}{(\Delta t)^2} - \partial_s(\mu \partial_s \{\boldsymbol{u}^n\}_{1/4}) = \mu f^n,$$

$$\boldsymbol{u}^n(M_*) = 0, \qquad \boldsymbol{u}^0 = \boldsymbol{u}^1 = 0, \ (+\text{b.c.}).$$
 (D)

Here $u^n \sim u(., n\Delta t)$, $\{u^n\}_{1/4} = \frac{1}{4} (u^{n+1} + 2u^n + u^{n-1})$

• construct exact reference DtN $\Lambda_{\Delta t}$, and the DtNs $\mathcal{B}_i^{\Delta t}$ for the semi-discrete (D).

Continuous problem	Semi-discrete problem	
$-i\omega~(\sim\partial_t)$	$\underbrace{\frac{2}{\Delta t}\frac{1-z}{1+z}}_{-i\omega+O((\Delta t)^2)}$	$z = e^{i\omega\Delta t}$ Fourier of a shift

Continuous problem	Semi-discrete problem	
$-i\omega~(\sim\partial_t)$	$\frac{2}{\Delta t} \frac{1-z}{1+z}$	$z = e^{i\omega\Delta t}$ Fourier of a shift
$\Lambda(\omega)$	$ \mathbf{\Lambda} \begin{pmatrix} -i\omega + O((\Delta t)^2) \\ \frac{2i}{\Delta t} \frac{1-z}{1+z} \end{pmatrix} $	$\equiv \mathbf{\Lambda}_{\Delta t}(z)$

Continuous problem	Semi-discrete problem	
$-i\omega~(\sim\partial_t)$	$\frac{\frac{2}{\Delta t}\frac{1-z}{1+z}}{1+z}$	$z = e^{i\omega\Delta t}$ Fourier of a shift
$\Lambda(\omega)$	$\mathbf{\Lambda}\left(\frac{2i}{\Delta t}\frac{1-z}{1+z}\right)$	$\equiv \mathbf{\Lambda}_{\Delta t}(z)$

From frequency domain to time domain

Step 1. Define convolution weights $\lambda_k^{\Delta t}$ ($\Lambda_{\Delta t}(z)$ is analytic for |z| < 1): $\Lambda_{\Delta t}(z) = \sum_{k=0}^{\infty} \lambda_k^{\Delta t} z^k, \quad \lambda_k^{\Delta t} = \underbrace{\frac{1}{2\pi i} \int\limits_{\partial B(0,\rho)} \Lambda_{\Delta t}(z) z^{-k-1} dz}_{\text{computable}}.$

Continuous problem	Semi-discrete problem	
$-i\omega~(\sim\partial_t)$	$\frac{\frac{2}{\Delta t}\frac{1-z}{1+z}}{1+z}$	$z = e^{i\omega\Delta t}$ Fourier of a shift
$\Lambda(\omega)$	$\mathbf{\Lambda}\left(\frac{2i}{\Delta t}\frac{1-z}{1+z}\right)$	$\equiv \mathbf{\Lambda}_{\Delta t}(z)$

From frequency domain to time domain

Step 1. Define convolution weights $\lambda_{k}^{\Delta t}$ ($\Lambda_{\Delta t}(z)$ is analytic for |z| < 1): $\Lambda_{\Delta t}(z) = \sum_{k=0}^{\infty} \lambda_{k}^{\Delta t} z^{k}, \quad \lambda_{k}^{\Delta t} = \underbrace{\frac{1}{2\pi i} \int_{\partial B(0,\rho)} \Lambda_{\Delta t}(z) z^{-k-1} dz}_{\text{computable}}.$ Step 2. Discretization of $\int_{0}^{t} \lambda(\tau)g(t-\tau)d\tau = \mathcal{F}^{-1}(\Lambda(\omega)\mathcal{F}g)(t)$:

Continuous problem	Semi-discrete problem	
$-i\omega~(\sim\partial_t)$	$\frac{\frac{2}{\Delta t}\frac{1-z}{1+z}}{1+z}$	$z = e^{i\omega\Delta t}$ Fourier of a shift
$\Lambda(\omega)$	$\mathbf{\Lambda} \left(\frac{2i}{\Delta t} \frac{1-z}{1+z} \right)$	$\equiv \mathbf{\Lambda}_{\Delta t}(z)$

From frequency domain to time domain

Step 1. Define convolution weights $\lambda_{k}^{\Delta t}$ ($\Lambda_{\Delta t}(z)$ is analytic for |z| < 1): $\Lambda_{\Delta t}(z) = \sum_{k=0}^{\infty} \lambda_{k}^{\Delta t} z^{k}, \quad \lambda_{k}^{\Delta t} = \underbrace{\frac{1}{2\pi i} \int\limits_{\partial B(0,\rho)} \Lambda_{\Delta t}(z) z^{-k-1} dz}_{\text{computable}}.$ Step 2. Discretization of $\int_{0}^{t} \lambda(\tau)g(t-\tau)d\tau = \mathcal{F}^{-1}(\Lambda(\omega)\mathcal{F}g)(t):$ $\mathcal{F}^{-1}(\Lambda_{\Delta t}(z)\mathcal{F}g)(t)$

Continuous problem	Semi-discrete problem	
$-i\omega~(\sim\partial_t)$	$\frac{2}{\Delta t} \frac{1-z}{1+z}$	$z = e^{i\omega\Delta t}$ Fourier of a shift
$\Lambda(\omega)$	$\mathbf{\Lambda} \left(\frac{2i}{\Delta t} \frac{1-z}{1+z} \right)$	$\equiv \mathbf{\Lambda}_{\Delta t}(z)$

From frequency domain to time domain

Step 1. Define convolution weights $\lambda_{k}^{\Delta t}$ ($\Lambda_{\Delta t}(z)$ is analytic for |z| < 1): $\Lambda_{\Delta t}(z) = \sum_{k=0}^{\infty} \lambda_{k}^{\Delta t} z^{k}, \quad \lambda_{k}^{\Delta t} = \underbrace{\frac{1}{2\pi i} \int\limits_{\partial B(0,\rho)} \Lambda_{\Delta t}(z) z^{-k-1} dz}_{\text{computable}}.$ Step 2. Discretization of $\int_{0}^{t} \lambda(\tau)g(t-\tau)d\tau = \mathcal{F}^{-1}(\Lambda(\omega)\mathcal{F}g)(t):$ $\mathcal{F}^{-1}(\Lambda_{\Delta t}(z)\mathcal{F}g)(t) = \sum \lambda_{k}^{\Delta t}\mathcal{F}^{-1}(e^{i\omega k\Delta t}\mathcal{F}g)(t)$

Continuous problem	Semi-discrete problem	
$-i\omega~(\sim\partial_t)$	$\frac{2}{\Delta t} \frac{1-z}{1+z}$	$z = e^{i\omega\Delta t}$ Fourier of a shift
$\Lambda(\omega)$	$\mathbf{\Lambda} \left(\frac{2i}{\Delta t} \frac{1-z}{1+z} \right)$	$\equiv \mathbf{\Lambda}_{\Delta t}(z)$

From frequency domain to time domain

Step 1. Define convolution weights $\lambda_k^{\Delta t}$ ($\Lambda_{\Delta t}(z)$ is analytic for |z| < 1): $\Lambda_{\Delta t}(z) = \sum_{k=0}^{\infty} \lambda_k^{\Delta t} z^k, \quad \lambda_k^{\Delta t} = \underbrace{\frac{1}{2\pi i} \int\limits_{\partial B(0,\rho)} \Lambda_{\Delta t}(z) z^{-k-1} dz}_{computable}.$ Step 2. Discretization of $\int_0^t \lambda(\tau)g(t-\tau)d\tau = \mathcal{F}^{-1}(\Lambda(\omega)\mathcal{F}g)(t)$: $\mathcal{F}^{-1}(\Lambda_{\Delta t}(z)\mathcal{F}g)(t) = \sum \lambda_k^{\Delta t}\mathcal{F}^{-1}(e^{i\omega k\Delta t}\mathcal{F}g)(t) = \sum \lambda_k^{\Delta t}g(t-k\Delta t)$

Implicit form

$$\int_{\mathcal{T}^m} \mu(\partial_t^{\Delta t})^2 u^n v + \int_{\mathcal{T}^m} \mu \partial_s \{u^n\}_{1/4} \partial_s v - \sum_j \{\mathcal{B}_j^{\Delta t} u^n(M_{m,j})\}_{1/4} v(M_{m,j}) = \int_{\mathcal{T}^m} \mu f v.$$

Implicit form

$$\int_{\mathcal{T}^m} \mu(\partial_t^{\Delta t})^2 u^n v + \int_{\mathcal{T}^m} \mu \partial_s \{u^n\}_{1/4} \partial_s v - \sum_j \{\mathcal{B}_j^{\Delta t} u^n(M_{m,j})\}_{1/4} v(M_{m,j}) = \int_{\mathcal{T}^m} \mu f v.$$

Stability of the coupled formulation

For the continuous formulation the stability is ensured by $\int_{0}^{t} \Lambda(\partial_{t}) u \partial_{t} u \geq 0$.

Discrete formulation:
$$\Delta t \sum_{k=0}^{n} \left\{ \mathbf{\Lambda}_{\Delta t} u^{k} \right\}_{1/4} \frac{u^{k+1} - u^{k-1}}{2\Delta t} \ge 0$$

Implicit form

$$\int_{\mathcal{T}^m} \mu(\partial_t^{\Delta t})^2 u^n v + \int_{\mathcal{T}^m} \mu \partial_s \{u^n\}_{1/4} \partial_s v - \sum_j \{\mathcal{B}_j^{\Delta t} u^n(M_{m,j})\}_{1/4} v(M_{m,j}) = \int_{\mathcal{T}^m} \mu f v.$$

Stability of the coupled formulation

For the continuous formulation the stability is ensured by $\int_{\Omega} \mathbf{\Lambda}(\partial_t) \mathbf{u} \partial_t \mathbf{u} \ge 0$.

Discrete formulation:
$$\Delta t \sum_{k=0}^{n} \left\{ \mathbf{\Lambda}_{\Delta t} u^{k} \right\}_{1/4} \frac{u^{k+1} - u^{k-1}}{2\Delta t} \ge 0$$

After the space discretization:

Explicit form

$$\int_{\mathcal{T}^m} \mu(\partial_t^{\Delta t})^2 u^n v_h + \int_{\mathcal{T}^m} \mu \partial_s^h u_h^n \partial_s^h v_h - \sum_j \{\mathcal{B}_j^{\Delta t} u_h^n(M_{m,j})\}_{1/4} v_h(M_{m,j}) = \int_{\mathcal{T}^m} \mu f v_h.$$

The stability is ensured under the classical CFL condition.

Complexity: evaluating $\{\mathcal{B}_m^{\Delta t} u^n\}_{1/4} v$ is of $O(n) \implies O(N^2)$ for O(N) time steps

Numerical experiments

Tree parameters

 $\alpha_1=$ 0.4, $\alpha_2=$ 0.3, $\mu_1=1$ and $\mu_2=$ 0.3. Neumann case.

Dirichlet data: $u(M_*, t) = h(t) = e^{-50(t-1)^2}$. Cutoff after 3 generations. Reference solution: on \mathcal{T}^m with *m* large

Convolution Quadrature

Remark: Computational times (including pre-computations): $\sim 1-2$ mins for truncated problems; $\sim 10 h$ for reference

п

$$\boldsymbol{B}(\omega, \boldsymbol{M}_{m,k}) = -\sum_{k=1}^{p} \frac{\mu_{k} \mu_{m,k}}{\alpha_{k} \ell_{m,k}} \boldsymbol{\Lambda}(\alpha_{k} \ell_{m,k} \omega).$$

Coupled formulation:

Find ${\color{black}{u}}\in C^2(0,\,\mathcal{T};\,\mathcal{H}^1_\mu(\mathcal{T}^m)),\, ext{s.t.}\,\,{\color{black}{u}}(M_*)=0$ and

$$\int_{\mathcal{T}^m} \mu \partial_t^2 \mathbf{u} \mathbf{v} + \int_{\mathcal{T}^m} \mu \partial_s \mathbf{u} \partial_s \mathbf{v} - \sum_{j=1}^{p^m} B(\partial_t, M_{m,j}) \mathbf{u}(M_{m,j}, t) \mathbf{v}(M_{m,j}) = \int_{\mathcal{T}^m} \mu f \mathbf{v},$$

 $B(\partial_t, M_{m,1}) := B_1(\partial_t)$ is a full-tree DtN operator

$$orall v \in H^1_\mu(\mathcal{T}^m)$$
, with $v(M_*) = 0$.

Computing time-domain convolutions $B(\partial_t)u$

- convolution quadrature (Ch. Lubich '88)
- local transparent BCs

Local transparent BCs

$$\boldsymbol{\Lambda}(\omega) = \boldsymbol{\Lambda}(0) - \sum_{n=0}^{\infty} a_n \frac{\omega^2}{\omega_n^2 - \omega^2}, \quad a_n = \frac{(\partial_s \phi_n(0))^2}{\omega_n^2}.$$

Time-domain realization of the reference DtN operator

$$\begin{split} \Lambda(\partial_t)\mathbf{v} &= \mathbf{\Lambda}(0)\mathbf{v} + \sum_{n=0}^{\infty} a_n \frac{d\lambda_n}{dt}, \\ \frac{d^2}{dt^2}\lambda_n &+ \omega_n^2\lambda_n = \frac{d}{dt}\mathbf{v}, \qquad \lambda_n(0) = \frac{d}{dt}\lambda_n(0) = 0, \quad 0 \le n < \infty. \end{split}$$

Local transparent BCs

$$\boldsymbol{\Lambda}(\omega) = \boldsymbol{\Lambda}(0) - \sum_{n=0}^{\infty} a_n \frac{\omega^2}{\omega_n^2 - \omega^2}, \quad a_n = \frac{(\partial_s \phi_n(0))^2}{\omega_n^2}$$

Time-domain realization of the reference DtN operator

$$\begin{split} \Lambda(\partial_t)\mathbf{v} &= \mathbf{\Lambda}(0)\mathbf{v} + \sum_{n=0}^{\infty} a_n \frac{d\lambda_n}{dt}, \\ \frac{d^2}{dt^2}\lambda_n &+ \omega_n^2\lambda_n = \frac{d}{dt}\mathbf{v}, \qquad \lambda_n(0) = \frac{d}{dt}\lambda_n(0) = 0, \quad 0 \le n < \infty. \end{split}$$

Approximation of the reference DtN operator

$$\begin{split} &\Lambda_{N}(\partial_{t})\mathbf{v}=\mathbf{\Lambda}(0)\mathbf{v}+\sum_{n=0}^{N-1}a_{n}\frac{d\lambda_{n}}{dt},\\ &\frac{d^{2}}{dt^{2}}\lambda_{n}+\omega_{n}^{2}\lambda_{n}=\frac{d}{dt}\mathbf{v},\qquad\lambda_{n}(0)=\frac{d}{dt}\lambda_{n}(0)=0,\quad 0\leq n\leq N-1. \end{split}$$

•

Local transparent BCs

$$\boldsymbol{\Lambda}(\omega) = \boldsymbol{\Lambda}(0) - \sum_{n=0}^{\infty} a_n \frac{\omega^2}{\omega_n^2 - \omega^2}, \quad a_n = \frac{(\partial_s \phi_n(0))^2}{\omega_n^2}$$

Time-domain realization of the reference DtN operator

$$\begin{split} \Lambda(\partial_t)\mathbf{v} &= \mathbf{\Lambda}(0)\mathbf{v} + \sum_{n=0}^{\infty} a_n \frac{d\lambda_n}{dt}, \\ \frac{d^2}{dt^2}\lambda_n &+ \omega_n^2\lambda_n = \frac{d}{dt}\mathbf{v}, \qquad \lambda_n(0) = \frac{d}{dt}\lambda_n(0) = 0, \quad 0 \le n < \infty. \end{split}$$

Approximation of the reference DtN operator

$$\begin{split} &\Lambda_{N}(\partial_{t})\mathbf{v}=\mathbf{\Lambda}(0)\mathbf{v}+\sum_{n=0}^{N-1}a_{n}\frac{d\lambda_{n}}{dt},\\ &\frac{d^{2}}{dt^{2}}\lambda_{n}+\omega_{n}^{2}\lambda_{n}=\frac{d}{dt}\mathbf{v},\qquad\lambda_{n}(0)=\frac{d}{dt}\lambda_{n}(0)=0,\quad 0\leq n\leq N-1. \end{split}$$

Implementation: a_n and ω_n^2 via the residue theorem+contour integration

٠

Approximating transparent boundary conditions

The 'outer' boundary of \mathcal{T}^m : $\{M_{m,j}, j = 1, \dots, p^m\}.$

Transparent boundary conditions

$$B(\partial_t, M) = -\sum_{k=1}^{p} \frac{\mu_k \mu_{m,k}}{\alpha_k \ell_{m,k}} \Lambda(\alpha_k \ell_{m,k} \partial_t) \Longrightarrow$$
$$B_N(\partial_t, M) = -\sum_{k=1}^{p} \frac{\mu_k \mu_{m,k}}{\alpha_k \ell_{m,k}} \Lambda_N(\alpha_k \ell_{m,k} \partial_t)$$

For brevity:
$$B_j(\partial_t) := B(\partial_t, M_{m,j}).$$

Stability

Uniform in
$$N$$
 stability: energy analysis $(a_n \ge 0 \text{ in } \Lambda(\omega) = \Lambda(0) - \sum_{n=0}^{\infty} a_n \frac{\omega^2}{\omega_n^2 - \omega^2})$

Error analysis

 u_N solution with B_N on \mathcal{T}^m , u exact. For $e_N := u_N - u$:

$$\|\partial_t \mathbf{e}_{\mathsf{N}}(.,t)\|_{\mathcal{T}^m} + \|\partial_s \mathbf{e}_{\mathsf{N}}(.,t)\|_{\mathcal{T}^m} \leq Ct \|\partial_s u\|_{W^{4,1}(0,t;L^2_{\mu})} \sum_{n=\mathbf{N}}^{\infty} (\partial_s \phi_n(0))^2 \omega_n^{-4}.$$

Error analysis

 u_N solution with B_N on \mathcal{T}^m , u exact. For $e_N := u_N - u$:

$$\|\partial_t e_N(.,t)\|_{\mathcal{T}^m} + \|\partial_s e_N(.,t)\|_{\mathcal{T}^m} \leq Ct \|\partial_s u\|_{W^{4,1}(0,t;L^2_{\mu})} \sum_{n=N}^{\infty} (\partial_s \phi_n(0))^2 {\omega_n}^{-4}.$$

Goal

Find N s.t.
$$\sum_{n=N}^{\infty} (\partial_s \phi_n(0))^2 \omega_n^{-4} < \varepsilon$$

Reminder

 ω_n^2 are eigenvalues of $-\mu^{-1}\partial_s(\mu\partial_s)$ on $V := \{v \in H^1_\mu : v(0) = 0\}, \phi_n$ are the corresponding eigenfunctions

Error analysis

 u_N solution with B_N on \mathcal{T}^m , u exact. For $e_N := u_N - u$:

$$\|\partial_t \mathbf{e}_{\mathsf{N}}(.,t)\|_{\mathcal{T}^m} + \|\partial_s \mathbf{e}_{\mathsf{N}}(.,t)\|_{\mathcal{T}^m} \leq Ct \|\partial_s u\|_{W^{4,1}(0,t;L^2_{\mu})} \sum_{n=\mathbf{N}}^{\infty} (\partial_s \phi_n(0))^2 \omega_n^{-4}.$$

Goal

Find N s.t.
$$\sum_{n=N}^{\infty} (\partial_s \phi_n(0))^2 \omega_n^{-4} < \varepsilon$$

Reminder

$${\omega_n}^2$$
 are eigenvalues of $-\mu^{-1}\partial_s(\mu\partial_s)$ on $V:=\{v\in H^1_\mu: v(0)=0\}$,

 ϕ_n are the corresponding eigenfunctions

What does not work

Bound $|\partial_s \phi_n(0)|$ and ω_n for every *n* (bounding convergent series by a non-convergent one)

Goal

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s}\phi_{n}(0))^{2}\omega_{n}^{-4} < \varepsilon$

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

$$\sum_{\substack{\omega_n: |\omega_n - W| \leq \eta}} (\partial_s \phi_n(0))^2 < C_\eta W^2.$$

Goal

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s}\phi_{n}(0))^{2}\omega_{n}^{-4} < \varepsilon$

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

$$\sum_{\substack{\omega_n: \, |\omega_n - W| \leq \eta}} (\partial_s \phi_n(0))^2 < C_\eta W^2.$$

The estimate does not depend on the number of ω_n on the interval ($W - \eta, W + \eta$)

Goal

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s}\phi_{n}(0))^{2}\omega_{n}^{-4} < \varepsilon$

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

$$\sum_{\substack{\omega_n: \ |\omega_n - W| \leq \eta}} (\partial_s \phi_n(\mathbf{0}))^2 < C_\eta W^2.$$

$$\sum_{\omega_n > N} \left(\partial_s \phi_n(0) \right)^2 \omega_n^{-4}$$

Goal

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s}\phi_{n}(0))^{2}\omega_{n}^{-4} < \varepsilon$

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

$$\sum_{\substack{\omega_n: \, |\omega_n - W| \leq \eta}} (\partial_s \phi_n(\mathbf{0}))^2 < C_\eta W^2.$$

$$\sum_{\omega_n \geq N} (\partial_{\mathfrak{s}} \phi_n(0))^2 \omega_n^{-4} \leq \sum_{k=N}^{\infty} \sum_{|\omega_n - k| \leq \frac{1}{2}} (\partial_{\mathfrak{s}} \phi_n(0))^2 \omega_n^{-4}$$

Goal

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s}\phi_{n}(0))^{2}\omega_{n}^{-4} < \varepsilon$

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

$$\sum_{\substack{\omega_n: \, |\omega_n - W| \leq \eta}} (\partial_s \phi_n(\mathbf{0}))^2 < C_\eta W^2.$$

$$\sum_{\omega_n \ge N} (\partial_s \phi_n(0))^2 \omega_n^{-4} \le \sum_{k=N}^{\infty} \sum_{|\omega_n - k| \le \frac{1}{2}} (\partial_s \phi_n(0))^2 \omega_n^{-4}$$
$$\le c \sum_{k=N}^{\infty} \frac{1}{k^4} \sum_{|\omega_n - k| \le \frac{1}{2}} (\partial_s \phi_n(0))^2$$

Goal

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s}\phi_{n}(0))^{2}\omega_{n}^{-4} < \varepsilon$

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

$$\sum_{\substack{\omega_n: \ |\omega_n - W| \leq \eta}} (\partial_s \phi_n(0))^2 < C_\eta W^2.$$

$$\sum_{\omega_n \ge N} (\partial_s \phi_n(0))^2 \omega_n^{-4} \le \sum_{k=N}^{\infty} \sum_{|\omega_n - k| \le \frac{1}{2}} (\partial_s \phi_n(0))^2 \omega_n^{-4}$$
$$\le c \sum_{k=N}^{\infty} \frac{1}{k^4} \sum_{|\omega_n - k| \le \frac{1}{2}} (\partial_s \phi_n(0))^2 \le C \sum_{k=N}^{\infty} \frac{1}{k^4} k^2 \le \frac{\tilde{C}}{N}.$$

Goal

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s}\phi_{n}(0))^{2}\omega_{n}^{-4} < \varepsilon$

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

$$\sum_{\substack{\omega_n: \ |\omega_n - W| \leq \eta}} (\partial_s \phi_n(0))^2 < C_\eta W^2.$$

$$\sum_{\omega_n \ge N} (\partial_s \phi_n(0))^2 \omega_n^{-4} \le \sum_{k=N}^{\infty} \sum_{|\omega_n - k| \le \frac{1}{2}} (\partial_s \phi_n(0))^2 \omega_n^{-4}$$
$$\le c \sum_{k=N}^{\infty} \frac{1}{k^4} \sum_{|\omega_n - k| \le \frac{1}{2}} (\partial_s \phi_n(0))^2 \le C \sum_{k=N}^{\infty} \frac{1}{k^4} k^2 \le \frac{\tilde{C}}{N}.$$

Goal

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s}\phi_{n}(0))^{2}\omega_{n}^{-4} < \varepsilon$

Adapting [Barnett, Hassell 2011 (Lipschitz domains)]

$$\sum_{\substack{\omega_n: \, |\omega_n - W| \leq \eta}} (\partial_s \phi_n(\mathbf{0}))^2 < C_\eta W^2.$$

Changing the point of view

$$\begin{split} \sum_{\omega_n \ge N} (\partial_s \phi_n(0))^2 \omega_n^{-4} &\leq \sum_{k=N}^{\infty} \sum_{|\omega_n - k| \le \frac{1}{2}} (\partial_s \phi_n(0))^2 \omega_n^{-4} \\ &\leq c \sum_{k=N}^{\infty} \frac{1}{k^4} \sum_{|\omega_n - k| \le \frac{1}{2}} (\partial_s \phi_n(0))^2 \le C \sum_{k=N}^{\infty} \frac{1}{k^4} k^2 \le \frac{\tilde{C}}{N}. \end{split}$$

Conclusion

$$\sum_{\omega_n\geq\varepsilon^{-1}}(\partial_s\phi_n(0))^2\omega_n^{-4}<\tilde{C}\varepsilon.$$

Goal (N plays a role in the complexity estimate)

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_s \phi_n(0))^2 \omega_n^{-4} < \varepsilon$

Goal (N plays a role in the complexity estimate)

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_s \phi_n(0))^2 \omega_n^{-4} < \varepsilon$

$$N_{\varepsilon} = \#\{\omega_n : \omega_n < \varepsilon^{-1}\}$$

Goal (N plays a role in the complexity estimate)

Find N_{ε} s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_s \phi_n(0))^2 \omega_n^{-4} < \varepsilon$

$$\begin{split} \textit{\textit{N}}_{\varepsilon} &= \#\{\omega_n:\,\omega_n < \varepsilon^{-1}\}\\ \text{Self-similarity dimension}: \boxed{\textit{\textit{d}}_{s} \in (0,\infty):\sum_{k=0}^{p-1} \alpha_k^{\textit{\textit{d}}_{s}} = 1} \left(\textit{\textit{d}}_{s} < 1 \iff \text{total length} < \infty\right) \end{split}$$

Goal (*N* plays a role in the complexity estimate)

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s} \phi_{n}(0))^{2} \omega_{n}^{-4} < \varepsilon$

$$\begin{split} & \textit{\textit{N}}_{\varepsilon} = \#\{\omega_n: \, \omega_n < \varepsilon^{-1}\} \end{split}$$
 Self-similarity dimension :
$$\boxed{\textit{\textit{d}}_s \in (0,\infty): \sum_{k=0}^{p-1} \alpha_k^{\textit{\textit{d}}_s} = 1} (\textit{\textit{d}}_s < 1 \iff \text{total length} < \infty) \end{split}$$

Bounds on N_{ε}

$$\sum_{k=0}^{p-1} \alpha_k < 1 \ (\textit{d}_{s} < 1): \ \textit{N}_{\varepsilon} = \textit{O}\left(\varepsilon^{-1}\right)$$

Proof: spectral analysis ideas from Kigami, Lapidus 1993 and Levitin, Vassiliev 1996

Goal (*N* plays a role in the complexity estimate)

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s} \phi_{n}(0))^{2} \omega_{n}^{-4} < \varepsilon$

$$\begin{split} & \textit{\textit{N}}_{\varepsilon} = \# \{ \omega_n : \, \omega_n < \varepsilon^{-1} \} \\ \text{Self-similarity dimension} : \boxed{\textit{\textit{d}}_{s} \in (0,\infty) : \sum_{k=0}^{p-1} \alpha_k^{\textit{\textit{d}}_{s}} = 1} \left(\textit{\textit{d}}_{s} < 1 \iff \text{total length} < \infty\right) \end{split}$$

Bounds on N_{ε}

$$\sum_{k=0}^{p-1} \alpha_k < 1 \ (d_s < 1): \ N_{\varepsilon} = O\left(\varepsilon^{-1}\right)$$
$$\sum_{k=0}^{p-1} \alpha_k = 1 \ (d_s = 1): \ N_{\varepsilon} = O(\varepsilon^{-1}\log\varepsilon^{-1})$$

Proof: spectral analysis ideas from Kigami, Lapidus 1993 and Levitin, Vassiliev 1996

Goal (*N* plays a role in the complexity estimate)

Find
$$N_{\varepsilon}$$
 s.t. $\sum_{n=N_{\varepsilon}}^{\infty} (\partial_{s} \phi_{n}(0))^{2} \omega_{n}^{-4} < \varepsilon$

$$\begin{split} & \textit{\textit{N}}_{\varepsilon} = \#\{\omega_n : \, \omega_n < \varepsilon^{-1}\} \end{split}$$
 Self-similarity dimension :
$$\boxed{\textit{\textit{d}}_s \in (0,\infty) : \sum_{k=0}^{p-1} \alpha_k^{\textit{\textit{d}}_s} = 1} (\textit{\textit{d}}_s < 1 \iff \text{total length} < \infty)$$

Bounds on N_{ε}

$$\sum_{k=0}^{p-1} \alpha_k < 1 \ (d_s < 1): \ N_{\varepsilon} = O\left(\varepsilon^{-1}\right)$$

$$\sum_{k=0}^{p-1} \alpha_k = 1 \ (d_s = 1): \ N_{\varepsilon} = O(\varepsilon^{-1} \log \varepsilon^{-1})$$

$$\sum_{k=0}^{p-1} \alpha_k > 1 \ (d_s > 1): \ N_{\varepsilon} = O\left(\varepsilon^{-d_s}\right) \ (\text{Lungs:} \ d_s \approx 3.98)$$

Proof: spectral analysis ideas from Kigami, Lapidus 1993 and Levitin, Vassiliev 1996

Numerical experiments

Tree parameters

 $\alpha_1=$ 0.4, $\alpha_2=$ 0.3, $\mu_1=1$ and $\mu_2=$ 0.3. Neumann case.

Dirichlet data: $u(M_*, t) = h(t) = e^{-50(t-1)^2}$. Cutoff after 3 generations. Reference solution: on \mathcal{T}^m with *m* large.

Rational Function Conditions: Increasing Accuracy

Rational Function Conditions: Increasing Accuracy

٦

Rational Function Conditions: Increasing Accuracy

п

Prospectives and future work

- Improved convergence of Local Transparent BCs
- Kirchoff-like conditions accounting for angles between junctions
- BCs accounting for the interaction of the bronchioli with alveoli/lung tissue

Thank you for your attention!

References:

- theory and low-order ABC: P. Joly, MK, A. Semin, Wave Propagation in Fractal Trees. Mathematical and Numerical Issues, Networks and Heterogeneous Media
- theory and low-order ABC: A. Semin, Propagation d'ondes dans des jonctions de fentes minces. Ph.D. thesis (2010)
- Convolution Quadrature: P. Joly, MK, Transparent Boundary Conditions for Wave Propagation in Fractal Trees: Convolution quadrature, Num. Math. 2020
- Local Transparent BCs: P. Joly, MK, Local Transparent Boundary Conditions for Wave Propagation in Fractal Trees, Part (I), (II), SISC and SINUM, to appear

Special thanks to A. Semin (TU Darmstadt) for his code NETWAVES