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Global non-convex optimization with function values

• Zero-th order minimization

min
x∈Ω

f(x)

– Ω ⊂ R
d simple compact subset (e.g., [−1, 1]d)

– f with some bounded derivatives

– access to function values

• No convexity assumption

• Many applications

– hyperparameter optimization in machine learning

– industry



Optimal algorithms (function calls and complexity)

• Goal: Find x̂ ∈ Ω such that f(x̂)−min
x∈Ω

f(x) 6 ε

– Worst-case guarantees over all functions f in some convex set F

sup
f∈F

{

f(x̂)−min
x∈Ω

f(x)
}

6 ε

– Lowest number of function calls f(x1), ..., f(xn(ε))

– Polynomial in the number of function calls n
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• Goal: Find x̂ ∈ Ω such that f(x̂)−min
x∈Ω

f(x) 6 ε

– Worst-case guarantees over all functions f in some convex set F

sup
f∈F

{

f(x̂)−min
x∈Ω

f(x)
}

6 ε

– Lowest number of function calls f(x1), ..., f(xn(ε))

– Polynomial in the number of function calls n

• Optimal worst-case performance over F (Novak, 2006)

– F = m bounded derivatives: n = Cd,mε−d/m

• Strategy for polynomial-time complexity in n

– model and optimize f simultaeously



Reformulation as a generic SoS problem

• Equivalent convex problem

min
x∈Ω

f(x) = sup
c∈R

c such that ∀x ∈ Ω, f(x)− c > 0

f (x)

x

c



Reformulation as a generic SOS problem

• Equivalent convex problem

sup
c∈R

c st ∀x ∈ Ω, f(x)− c > 0

• Replace constraint f−c ≥ 0 by sum of squares f−c =
∑

i∈I λih
2
i

– linear model of functions h(x) = 〈h, φ(x)〉, φ : Ω → H

sup
c∈R, λ≥0

c st ∀x ∈ Ω, f(x)− c =
∑

i∈I

λi 〈h, φ(x)〉2

– PSD problem : writing A =
∑

i∈I λi hi ⊗ hi

sup
c∈R, A�0

c st ∀x ∈ Ω, f(x)− c = 〈φ(x), Aφ(x)〉



Modeling and optimizing f ∈ Cm(Ω) : three steps

• Step 1 : Showing the relaxation is tight (1) = (2)

sup
c∈R, A�0

c st ∀x ∈ Ω, f(x)− c = 〈φ(x), Aφ(x)〉 (1)

sup
c∈R

c st ∀x ∈ Ω, f(x)− c≥ 0 (2)

– SC : ∃A∗ ∈ S+(H) s.t. f(x) = f∗ + 〈φ(x), A∗φ(x)〉



Modeling and optimizing f ∈ Cm(Ω) : three steps

• Step 1 : Showing the relaxation is tight

– SC : ∃A∗ ∈ S+(H) s.t. f(x) = f∗ + 〈φ(x), A∗φ(x)〉

• Step 2: discretizing using n = Cd,mǫ−d/m evaluations to have

precision ǫ solving

ĉ, Â = argmax
c∈R, A∈S+(H)

c−λ tr(A) st f(xi)−c = 〈φ(xi), Aφ(xi)〉 (3)

– guarantee that ‖ĉ− f∗‖ ≤ ǫ
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• Step 1 : Showing the relaxation is tight

– SC : ∃A∗ ∈ S+(H) s.t. f(x) = f∗ + 〈φ(x), A∗φ(x)〉
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precision ǫ solving

ĉ, Â = argmax
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c−λ tr(A) st f(xi)−c = 〈φ(xi), Aφ(xi)〉 (4)

• Step 3 : showing (6) can be written as a n× n PSD program,

which runs in O(n3)

ĉ, B̂ = argmax
c∈R, B∈S+(Rn)

c− λ tr(B) st f(xi)− c = 〈Φi, BΦi〉 (5)



Modeling and optimizing f ∈ Cm(Ω) : three steps

• Step 1 : Showing the relaxation is tight

– SC : ∃A∗ ∈ S+(H) s.t. f(x) = f∗ + 〈φ(x), A∗φ(x)〉

• Step 2: discretizing using n = Cd,mǫ−d/m evaluations to have

precision ǫ solving

ĉ, Â = argmax
c∈R, A∈S+(H)

c−λ tr(A) st f(xi)−c = 〈φ(xi), Aφ(xi)〉 (6)

• Step 3 : showing (6) can be written as a n× n PSD program,

which runs in O(n3)

ĉ, B̂ = argmax
c∈R, B∈S+(Rn)

c− λ tr(B) st f(xi)− c = 〈Φi, BΦi〉 (7)

• What sould H be ? a) large enough, b) finite d representation



RKHS are a natural candidate for H

• Reproducing Kernel Hilbert Space (RKHS) :

– Hilbert space of functions g ∈ H, g : Rd → R

– Reproducing property : g(x) = 〈g, φ(x)〉H
– Kernel : k(x, x′) = 〈φ(x), φ(x′)〉H (computable)
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– Hilbert space of functions g ∈ H, g : Rd → R

– Reproducing property : g(x) = 〈g, φ(x)〉H
– Kernel : k(x, x′) = 〈φ(x), φ(x′)〉H (computable)

• Can represent rich spaces Sobolev spaces Hs(Ω) with Ω ⊂
R

d, s > d/2

〈f, g〉Hs(Ω) =
∑

|α|≤s

∫

Ω

∂αf ∂αg

The kernel k can be computed explicitely with Bessel functions



RKHS are a natural candidate for H

• Reproducing Kernel Hilbert Space (RKHS) :

– Hilbert space of functions g ∈ H, g : Rd → R

– Reproducing property : g(x) = 〈g, φ(x)〉H
– Kernel : k(x, x′) = 〈φ(x), φ(x′)〉H (computable)

• Can represent rich spaces Sobolev spaces Hs(Ω) with Ω ⊂
R

d, s > d/2

• Made for sample-based approaches : representer theorem

– Problem ming∈HL(g(x1), ..., g(xn)) +
λ
2‖g‖2H, λ ≥ 0

– Finite dimensional representer theorem in R
n :

gopt(x) =
n∑

i=1

αi k(xi, x) =⇒ becomes problem in α



Step 1 : showing that f is SoS

Theorem: Assume Ω is bounded, f ∈ Cm(Ω) has isolated strict-

second order minima in
◦

Ω and is greater than δ > 0 near the boundary

∂Ω.

For any d/2 < s ≤ m− 2, there exists h1, ..., hN ∈ Hs(Ω) such that

∀x ∈ Ω, f(x) = f∗ +
N∑

i=1

h2
i (x)

= f∗ + 〈φ(x), A∗φ(x)〉Hs(Ω)

where A∗ =
∑

hi ⊗ hi



Step 1 : showing that f − f∗ is SoS (proof sketch 1)

• Assumption: Assume Ω is bounded, f ∈ Cm(Ω) has isolated strict-

second order minima in
◦

Ω and is greater than δ > 0 near the boundary

∂Ω.

• From local to global If f − f∗ is SoS locally, then it is SoS globally

compactness argument + gluing with partition of unity of the form

1 =
N∑

i=1

χ2
i

• If f(x0)− f∗ > 0, then f(x)− f∗ > δ locally and hence
√
f − f∗ ∈

Cm(B(x0, r0)) ⊂ Hs(B(x0, r0))



Step 1 : showing that f − f∗ is SoS (proof sketch 2)

• If f(x0)− f∗ = 0, then locally (strict minimum assumption)

f(x)− f∗ =
1
2(x−x0)

⊤

(
∫ 1

0

(1− t)∇2f(x0 + t(x− x0))dt

)

︸ ︷︷ ︸
R(x)∈Hs(B(x0,r0))≻δI

(x−x0)

•
√

R(x) ∈ Hs(B(x0, r0))

• h(x) =
√

R(x)(x− x0) ∈ Hs(B(x0, r0)), f − f∗ =
∑

h2
i



Step 2 : discretizing using random samples

• Subsample n points x1, . . . , xn ∈ Ω and solve

ĉ, Â = argmax
c∈R, A<0

c−λ tr(A) st f(xi) = c+ 〈φ(xi), Aφ(xi)〉

• Theorem (Rudi, Marteau-Ferey, and Bach, 2020) Up to logarithmic

terms : if n = Cd,m,Ω ε−d/(m−d/2−3) and the samples (x1, ..., xn) are

taken randomly from Ω, and if λ = ε, then it holds with probability

at least 1− δ:

|ĉ− f∗| ≤ ε tr(A∗) log 1
δ

• Optimal rates : n = Cd,m,Ωǫ
−d/(m−d/2)



Step 2 : discretizing using random samples (proof

ideas)

• Scattered data inequality If (x1, ..., xn) δ coverage of Ω, then

|f(x)− ĉ− 〈φ(x), Âφ(x)〉| ≤ ‖f − c− gA‖Cm−3−d/2 δm−3−d/2

≤ (tr(A∗) + tr(Â)) δm−3−d/2

Conclusion : ĉ− f∗ ≤ (tr(A∗) + tr(Â)) δm−3−d/2



Step 2 : discretizing using random samples (proof

ideas)

• Scattered data inequality If (x1, ..., xn) δ coverage of Ω, then

|f(x)− ĉ− 〈φ(x), Âφ(x)〉| ≤ ‖f − c− gA‖Cm−3−d/2 δm−3−d/2

≤ (tr(A∗) + tr(Â)) δm−3−d/2

Conclusion : ĉ− f∗ ≤ (tr(A∗) + tr(Â)) δm−3−d/2

• If (x1, ..., xn) sampled randomly, up to log factors, it is a δ = n−1/d

coverage of Ω

Conclusion : ĉ− f∗ ≤ (tr(A∗) + tr(Â)) n−
m−3−d/2

d

• Bound for the regularizing term bound tr(Â) in terms of tr(A∗)



Step 3 : Finite dimensional formulation

• Subsample n points x1, . . . , xn ∈ Ω and solve

sup
c∈R, A<0

c−λ tr(A) s.t. ∀i ∈ {1, . . . , n}, f(xi) = c+ 〈φ(xi), Aφ(xi)〉

• Finite dimensional problem Restriction to Hn = vect(φ(xi)) :

A ∈ S+(H) −→ A ∈ S+(Hn)



Step 3 : Finite dimensional formulation

• Subsample n points x1, . . . , xn ∈ Ω and solve

sup
c∈R, A<0

c−λ tr(A) s.t. ∀i ∈ {1, . . . , n}, f(xi) = c+ 〈φ(xi), Aφ(xi)〉

• Finite dimensional problem Restriction to Hn = vect(φ(xi)) :

A ∈ S+(H) −→ A ∈ S+(Hn)

• Finite-dimensional formulation : Representer theorem for RKHS

SoS (Marteau-Ferey, Bach, and Rudi (2020))

SDP of dimension n :

sup
c∈R, B<0,B∈Rn×n

c−λ tr(B) st ∀i ∈ {1, . . . , n}, f(xi) = c+Φ⊤
i BΦi

• Solvable in polynomial time with precision ǫ in O(n3.5 log 1
ǫ)



Final algorithm

• Input: f : Rd → R, Ω ⊂ R
d, n > 0, λ > 0, s > d/2

1. Sampling: {x1, . . . , xn} sampled i.i.d. uniformly on Ω

2. Feature computation

– Set fj = f(xj), ∀j ∈ {1, . . . , n}
– Compute Kij = k(xi, xj) for k Sobolev kernel of smoothness s

– Set Φj ∈ R
n computed using a cholesky decomposition of K

∀j ∈ {1, . . . , n}.

3. Solve max
c∈R,B<0

c− λ tr(B) s. t. ∀j ∈ {1, . . . , n}, fj − c = Φ⊤
j BΦj

• Output: c proxy for f∗

• One can extend the algorithm in order to compute a proxy of the

minimizer



Main properties of the model

• ”Always” possible to write a non-negative function as a RKHS SoS

• Bounds on the number of samples needed for a given precision

• Finite dimensional SDP with bounded complexity O(n3.5 log 1
ǫ)

• Breaks the curse of dimensionality in term of sample numbers

(needs ǫ−d/m samples) for smooth enough functions (but not in

the constants)

• For the moment, no certificate bound on the result of the

algorithm



Illustration

• Minimization of two-dimensional function



Illustration
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Illustration

• Minimization of eight-dimensional function
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Extension

• Constrained optimization problem

inf
x∈Rd

f(x) such that ∀x ∈ Ω, g(x) > 0



Extension

• Constrained optimization problem

inf
x∈Rd

f(x) such that ∀x ∈ Ω, g(x) > 0

• Sums-of-squares reformulation

sup
c∈R, A<0, B<0

c

such that ∀x ∈ Ω, f(x) = c+ 〈φ(x), Aφ(x)〉+ g(x)〈φ(x), Bφ(x)〉

– Extension of results on polynomials (Lasserre, 2001)



Conclusion

• Global optimization through kernel approximations

– Joint optimization and approximation

– infinite-dimensional sums-of-squares representation

– Controlled subsampling with guarantees
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– Efficient algorithms below O(n3) complexity

– Adaptive choice of sampling points

– Other infinite-dimensional convex optimization problems



Conclusion

• Global optimization through kernel approximations

– Joint optimization and approximation

– infinite-dimensional sums-of-squares representation

– Controlled subsampling with guarantees

• Further extensions

– Efficient algorithms below O(n3) complexity

– Adaptive choice of sampling points

– Other infinite-dimensional convex optimization problems

• See arxiv.org/abs/2012.11978 and francisbach.com/ for

interesting blog posts !
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