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Global non-convex optimization with function values

e Zero-th order minimization

min f(z)

— Q C R? simple compact subset (e.g., [—1,1]%)
— f with some bounded derivatives
— access to function values

e No convexity assumption

e Many applications

— hyperparameter optimization in machine learning
— industry



Optimal algorithms (function calls and complexity)

e Goal: Find Z € () such that f(z) — 111618 f(x) <e

— Worst-case guarantees over all functions f in some convex set &
sup {f(:f:) -~ minf(:v)} <e€
feF xel

— Lowest number of function calls f(z1), ..., f(Zn(e))

— Polynomial in the number of function calls n



Optimal algorithms (function calls and complexity)

e Goal: Find Z € () such that f(z) — mi{rzl f(x) <e
TE

— Worst-case guarantees over all functions f in some convex set &

sup { (&) —min f(w) | <

fesd
— Lowest number of function calls f(z1), ..., f(Zn(e))
— Polynomial in the number of function calls n

e Optimal worst-case performance over F (Novak, 2006)

— F = m bounded derivatives: n = Cgme 4™

e Strategy for polynomial-time complexity in n

— model and optimize f simultaeously



Reformulation as a generic SoS problem

e Equivalent convex problem

min f(x) =sup ¢ suchthat VxeQ, f(r)—c>0

A




Reformulation as a generic SOS problem

e Equivalent convex problem

sup ¢ st Ve e, f(z)—c>=0
ceR

e Replace constraint f —c > 0 by sum of squares f—c = ) Aihzz

— linear model of functions h(z) = (h,p(x)), ¢: Q2 — H

1€l

sup ¢ st Vxe, f(z)—c= Z)‘i (h, d(x))?

cER, \>0 py

— PSD problem : Mﬁh"u§f1:=§:“5[Aih@@§hi

sup ¢ st Vx e, f(zr)—c=(p(x), Ap(x))

ceR, A>0




Modeling and optimizing f € C"™({)) : three steps
e Step 1 : Showing the relaxation is tight (1) = (2)

sup ¢ st VreQ, f(r)—c=(¢(x), Ap(x)) (1)

ceR, A>0

sup ¢ st Ve e Q, f(x) —c>0 (2)
ceR

—SC:3A4, € S, (H) st. f(x) = f. + (d(x), Aud(x))



Modeling and optimizing f € C"™({)) : three steps

e Step 1 : Showing the relaxation is tight
— 5C: 34, € S4(H) st. f(z) = fu + (¢(z), Acd(2))

—d/m

e Step 2: discretizing using n = Cjy € evaluations to have

precision ¢ solving

é,A= argmax c—Mtr(4) st f(z;)—c = ($(z;), Ad(x;)) (3)
ceR, AcS(H)

— guarantee that ||¢ — fi|| < €



Modeling and optimizing f € C"™({)) : three steps

e Step 1 : Showing the relaxation is tight
— 5C: 34, € S4(H) st. f(z) = fu + (¢(z), Acd(2))

—d/m

e Step 2: discretizing using n = Cy € evaluations to have

precision ¢ solving

¢, A= argmax c—Atr(A) st f(x;)—c={(od(x;), Apd(x;)) (4)
ceR, AcS(H)

e Step 3 : showing (6) can be written as a n x n PSD program,
which runs in O(n?)

¢, B= argmax c—Atr(B) st f(z;) —c=(D;, B®;) (5)
ceR, B€S+(Rn)



Modeling and optimizing f € C"™({)) : three steps
e Step 1 : Showing the relaxation is tight
—SC:3A, € S4(3) st. f(z) = fu + (@(2), Ard(2))

—d/m

e Step 2: discretizing using n = Cy e evaluations to have

precision ¢ solving

é,A= argmax c—Mtr(4) st f(z;)—c = (P(z;), Ad(x;)) (6)
ceR, AcS (H)

e Step 3 : showing (6) can be written as a n x n PSD program,
which runs in O(n?)

¢, B= argmax c¢—Mtr(B) st f(z;) —c=(D;, B®;) (7)
ceR, BES+(R”)

e What sould 3 be ? a) large enough, b) finite d representation



RKHS are a natural candidate for H

e Reproducing Kernel Hilbert Space (RKHS) :

— Hilbert space of functions g € H, g: RY - R

— Reproducing property : g(x) = (g, ¢(x))
— Kernel : k(x,z") = (¢p(x), p(x"))3c (computable)



RKHS are a natural candidate for H

e Reproducing Kernel Hilbert Space (RKHS) :

— Hilbert space of functions g € H, g: RY - R

— Reproducing property : g(x) = (g, ¢(x))
— Kernel : k(x,z") = (¢p(x), p(x"))3c (computable)

e Can represent rich spaces Sobolev spaces H*(€2) with Q) C
R%, s> d/2

gy = 3 /Q 01 8%

o <s

The kernel £ can be computed explicitely with Bessel functions



RKHS are a natural candidate for H

¢ Reproducing Kernel Hilbert Space (RKHS) :

— Hilbert space of functions g € I, g: RY - R

— Reproducing property : g(x) = (g, ¢(x))
— Kernel : k(x,2") = (¢p(x), ¢(z’))5 (computable)

e Can represent rich spaces Sobolev spaces H*(€2) with Q) C
Re, 5> d/2

e Made for sample-based approaches : representer theorem

— Problem mingese L(g(1), .., 9(#n)) + 59l A >0
— Finite dimensional representer theorem in R :

mn
Gopt(T) = Za@- k(x;,x) = becomes problem in «
i=1



Step 1 : showing that f is SoS

Theorem: Assume (2 is bounded, f € C™((2) has isolated strict-

second order minima in {2 and is greater than 0 > 0 near the boundary
0f2.

For any d/2 < s < m — 2, there exists h1, ..., Ay € H?(€2) such that

N
Vo €Q, f(x) = fo+ Y hi(z)
1=1

= fu +{(0(2), Asd(2)) s ()
where A, = Z hi @ h;



Step 1 : showing that f — f, is SoS (proof sketch 1)

e Assumption: Assume () is bounded, f € C"™(2) has isolated strict-

second order minima in §2 and is greater than 0 > 0 near the boundary
0f2.

e From local to global If f — f, is SoS locally, then it is SoS globally
compactness argument + gluing with partition of unity of the form

o If f(xg) — f« >0, then f(z) — f. > J locally and hence \/f — f. €
C™(B(xzg,70)) C H?(B(x9,70))



Step 1 : showing that f — f, is SoS (proof sketch 2)

o If f(xg) — f. =0, then locally (strict minimum assumption)

DN =

f(2) = fu = 5(z—20) " (/O (1 =)V f(@o + t(z — xo))dt> (x—0)

J/

R(z)EHS(B(zg,r0)) =61

® R(.CC) < HS(B(CC(),’I“O))

o h(z) = /R(x)(x — x0) € H*(B(xo,70)), f— fo =21



Step 2 : discretizing using random samples

e Subsample n points z4,...,z, € (2 and solve

¢, A = argmaxc—)\ tr(A) st f(x;) =c+ (d(x;), Ap(x;))

ceR, A>=0

e Theorem (Rudi, Marteau-Ferey, and Bach, 2020) Up to logarithmic
terms : if n = Cg .0 e~ 9 (M=4/2-3) and the samples (z1, ..., z,,) are
taken randomly from (2, and if A = ¢, then it holds with probability
at least 1 — o:

¢ — [ <e tr(Ay) logs

e Optimal rates : n = Oy, ge~ ¥/ (m=4/2)



Step 2 : discretizing using random samples (proof
ideas)

e Scattered data inequality If (x4, ...,2,) 0 coverage of €2, then

f(@) = &= {¢(x), Ag(@))] < |If — ¢ = gallem—s—ap 6™ 73747
< (tr(A,) + tr(A)) 67742

Conclusion : ¢ — f, < (tr(A,) + tr(A)) §m—3-d/2



Step 2 : discretizing using random samples (proof
ideas)

e Scattered data inequality If (x4, ...,2,) 0 coverage of €2, then

f(@) = &= {¢(x), Ag(@))] < |If — ¢ = gallem—s—ap 6™ 73747
< (tr(A,) + tr(A)) 67742

Conclusion : ¢ — f, < (tr(A,) + tr(A)) §m—3-d/2
o If (x1,...,2,) sampled randomly, up to log factors, it isa § = n~1/4
coverage of

N - m—3—d/2
Conclusion : ¢ — f, < (tr(As) +tr(4)) n d

e Bound for the regularizing term bound tr(A) in terms of tr(A,)



Step 3 : Finite dimensional formulation

e Subsample n points z4,...,z, € (2 and solve

sup c—Atr(A) st. Vie{l,...,n}, f(z;) =c+ (p(x;), Ap(x;))

ceR, A>=0

e Finite dimensional problem Restriction to H,, = vect(¢(x;)) :

A€ S_|_(J'C) — A € S+(J‘Cn)



Step 3 : Finite dimensional formulation

e Subsample n points z4,...,z, € 2 and solve

sup c—Atr(A) st. Vie{l,....,n}, f(z;) =c+ (p(x;), Ap(x;))

ceR, A>=0

e Finite dimensional problem Restriction to H,, = vect(¢(x;)) :

A€ S+(j{) — A € S+(5-Cn)

e Finite-dimensional formulation : Representer theorem for RKHS
SoS (Marteau-Ferey, Bach, and Rudi (2020))

SDP of dimension n :

sup c—Mtr(B) stVie{l,...,n}, f(z;) =c+ ® B,
ceR, B>=0,BER"xn

e Solvable in polynomial time with precision € in O(n*®log2)



Final algorithm
olnput: f:RY =R QCRYn>0,\>0,5>d/2

1. Sampling: {z1,...,x,} sampled i.i.d. uniformly on Q

2. Feature computation

— Set fj = f(il?j), \V/] - {1, - ,n}
— Compute K;; = k(z;, ;) for k Sobolev kernel of smoothness s
— Set ®; € R" computed using a cholesky decomposition of K

Vjed{l,...,n}.

_ ' R — .
3. Solve Jhax ¢ Atr(B) s.t. Vje{l,...,n}, fj —c=®,;, B,

e Output: c proxy for f,

e One can extend the algorithm in order to compute a proxy of the
minimizer



Main properties of the model

e "Always’ possible to write a non-negative function as a RKHS So0S
e Bounds on the number of samples needed for a given precision
e Finite dimensional SDP with bounded complexity O(n?®°log )

e Breaks the curse of dimensionality in term of sample numbers
(needs e~%/™ samples) for smooth enough functions (but not in
the constants)

e For the moment, no certificate bound on the result of the
algorithm



lllustration

Minimization of two-dimensional function
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function + trajectory

lllustration

ra1ndomized gradient descent
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function + trajectory

lllustration

model
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lllustration

¢ Minimization of eight-dimensional function

without high frequency component with high frequency component
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Extension

e Constrained optimization problem

inf f(x) suchthat VreQ, g(x) >0

R4



Extension

e Constrained optimization problem

inf f(x) suchthat VreQ, g(x) >0

R4

e Sums-of-squares reformulation

sup C
cER, A0, B0

such that Vx € Q, f(z) =c+ (¢(x), Ad(x)) + g(x){(d(x), Bo(x))

— Extension of results on polynomials (Lasserre, 2001)



Conclusion

e Global optimization through kernel approximations

— Joint optimization and approximation
— infinite-dimensional sums-of-squares representation
— Controlled subsampling with guarantees
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e Global optimization through kernel approximations

— Joint optimization and approximation
— infinite-dimensional sums-of-squares representation
— Controlled subsampling with guarantees

e Further extensions

— Efficient algorithms below O(n?) complexity
— Adaptive choice of sampling points
— Other infinite-dimensional convex optimization problems



Conclusion

e Global optimization through kernel approximations

— Joint optimization and approximation
— infinite-dimensional sums-of-squares representation
— Controlled subsampling with guarantees

e Further extensions

— Efficient algorithms below O(n?) complexity
— Adaptive choice of sampling points
— Other infinite-dimensional convex optimization problems

e See arxiv.org/abs/2012.11978 and francisbach.com/ for
Interesting blog posts !
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