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The fast diffusion equation
Consider the fast diffusion equation in Rd, d ≥ 1, m < 1

∂u

∂t
= ∆um , u∣t=0 = u0 ≥ 0 (FDE)

With p = 1
2m−1 , u = f

2p

d

dt
∫
Rd
udx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∥f∥2p2p

= 0 , d

dt
∫
Rd
um dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∥f∥p+1

p+1

= (p + 1)2
∫
Rd

∣∇f ∣2 dx

Gagliardo-Nirenberg-Sobolev inequalities

∥∇f∥
θ
2 ∥f∥

1−θ
p+1 ≥ CGNS(p) ∥f∥2p (GNS)

t→ +∞ asymptotics: u(t, x) ∼ B(t, x) = t−d/µ g(t−1/µ x)2p

B Barenblatt self-similar solutions, µ = 2 − d (1 −m) > 1
g(x) = (1 + ∣x∣2)

− 1
p−1 Aubin-Talenti type function

J. Dolbeault Rates for mean field evolution equations as t→∞
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Self-similar variables, entropy-entropy production
inequality

In self-similar variables (FDE) becomes a Fokker-Planck type equation

∂v

∂t
+∇ ⋅ (v (∇vm−1

− 2x) ) = 0 (1)

with (GNS) ⇐⇒ I[v] ≥ 4F[v] and d
dt
F[v] = −I[v]

Generalized entropy (free energy) and Fisher information

F[v] ∶= ∫
Rd

(B
m−1

(v − B) − vm−Bm

m
) dx , I[v] ∶= ∫

Rd
v ∣∇vm−1

+ 2x∣2 dx

where B(x) = g2p(x) = (1 + ∣x∣2)
− 1

1−m (with appropriate normalizations)

J. Dolbeault Rates for mean field evolution equations as t→∞
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Linearized entropy-entropy production inequality
(BBDGV)... Linearization: Let vε = B (1 + εB1−m f)

I[vε]
²

∼ ε2
∫Rd ∣∇f ∣

2 B dx

≥ 4 F[vε]
²

∼ ε2
∫Rd ∣f ∣

2 B2−m dx

Hardy–Poincaré inequality: with B2−m = B

1+∣x∣2

Λm,d ∫
Rd
f2
B

2−m dx ≤ ∫
Rd

∣∇f ∣2 B dx ∀ f ∈ H1
(B dx) , ∫

Rd
f B2−m dx = 0

asymptotic decay rates = rates of the linearized FDE equation

0 = ∂tv +∇ ⋅ (v∇ (vm−1
− B

m−1) )

∼ εB2−m
(∂tf − (1 −m)B

m−2
∇ ⋅ (B∇f))

same rate in the nonlinear regime (Bakry-Emery)
much more (BDNS): stability results... but the difficulty lies in the

justification of the Taylor expansion
J. Dolbeault Rates for mean field evolution equations as t→∞
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The subcritical Keller-Segel model

(Campos, JD)
(Dávila, JD, del Pino, Musso, Wei)
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The subcritical Keller-Segel model

M = ∫R2 n0 dx ≤ 8π: global existence (W. Jäger, S. Luckhaus 1992),
(JD, B. Perthame 2004)

If u solves
∂u

∂t
= ∇ ⋅ [u (∇ (logu) −∇v)]

the free energy

F [u] ∶= ∫
R2
u logu dx − 1

2 ∫R2
uv dx

satisfies
d

dt
F [u(t, ⋅)] = −∫

R2
u ∣∇ (logu) −∇v∣2 dx

The logarithmic HLS inequality (E. Carlen, M. Loss 1992)
F is bounded from below if and only if M ≤ 8π

J. Dolbeault Rates for mean field evolution equations as t→∞
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Time-dependent rescaling

u(x, t) =
1

R2(t)
n(

x

R(t)
, τ(t)) and v(x, t) = c(

x

R(t)
, τ(t))

with R(t) =
√

1 + 2 t and τ(t) = logR(t)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂n

∂t
= ∆n −∇ ⋅ (n (∇c − x)) x ∈ R2 , t > 0

c = −
1

2π
log ∣ ⋅ ∣ ∗ n x ∈ R2 , t > 0

n(⋅, t = 0) = n0 ≥ 0 x ∈ R2

(A. Blanchet, JD, B. Perthame 2006)
The convergence in self-similar variables

lim
t→∞

∥n(⋅, ⋅ + t) − n∞∥L1(Rd) = 0 and lim
t→∞

∥∇c(⋅, ⋅ + t) −∇c∞∥L2(Rd) = 0

means intermediate asymptotics in original variables:

∥u(x, t) − 1
R2(t)

n∞ ( x
R(t)

, τ(t)) ∥L1(R2) ↘ 0

J. Dolbeault Rates for mean field evolution equations as t→∞
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The stationary solution in self-similar variables

n∞ =M
e c∞−∣x∣

2
/2

∫R2 ec∞−∣x∣
2/2 dx

= −∆c∞ , c∞ = −
1

2π
log ∣ ⋅ ∣ ∗ n∞
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Linearization

We can introduce two functions f and g such that

n = n∞ (1 + f) and c = c∞(1 + g) = (−∆)
−1n

and rewrite the Keller-Segel model as

∂f

∂t
= L f +

1
n∞

∇(f n∞∇(c∞ g))

where the linearized operator is

L f =
1
n∞

∇ ⋅ (n∞∇(f − c∞ g))

and
−∆(c∞ g) = n∞ f

J. Dolbeault Rates for mean field evolution equations as t→∞
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Spectrum of L (lowest eigenvalues only)
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Figure: The lowest eigenvalues of −L = (−∆)−1(n f)

J. Dolbeault Rates for mean field evolution equations as t→∞
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Functional setting...

Lemma (A. Blanchet, JD, B. Perthame)
Sub-critical HLS inequality (A. Blanchet, JD, B. Perthame)

F [n] ∶= ∫
R2
n log (

n

n∞
)dx −

1
2 ∫R2

(n − n∞) (c − c∞)dx ≥ 0

achieves its minimum for n = n∞

Q1[f] = lim
ε→0

1
ε2 F [n∞(1 + ε f)] ≥ 0

if ∫R2 f n∞ dx = 0. Notice that f0 generates the kernel of Q1

Lemma (J. Campos, JD)

Poincaré type inequality. For any f ∈H1(R2, n∞ dx) such that
∫R2 f n∞ dx = 0, we have
∫
R2

∣∇(−∆)
−1

(f n∞)∣
2 n∞ dx = ∫

R2
∣∇(g c∞)∣

2 n∞ dx ≤ ∫
R2

∣f ∣2 n∞ dx

J. Dolbeault Rates for mean field evolution equations as t→∞
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... and eigenvalues

With g such that −∆(g c∞) = f n∞, Q1 determines a scalar product

⟨f1, f2⟩ ∶= ∫
R2
f1 f2 n∞ dx − ∫

R2
f1 n∞ (g2 c∞)dx

on the orthogonal space to f0 in L2(n∞ dx)

Q2[f] ∶=∫
R2

∣∇(f − g c∞)∣
2 n∞ dx with g = −

1
c∞

1
2π

log ∣ ⋅ ∣ ∗ (f n∞)

is a positive quadratic form, whose polar operator is the self-adjoint
operator L

⟨f,L f⟩ = Q2[f] ∀ f ∈ D(L2)

Lemma (J. Campos, JD)
L has pure discrete spectrum and its lowest eigenvalue is 1

J. Dolbeault Rates for mean field evolution equations as t→∞
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A simple Cucker-Smale mean-field model

(Xingyu Li)
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A simple version of the Cucker-Smale model
(J. Tugaut, 2014), (A. Barbaro, J. Cañizo, J.A. Carrillo, and
P. Degond, 2016), (X. Li)
A model for bird flocking (simplified version)

∂f

∂t
=D∆vf +∇v ⋅ (∇vφ(v) f − uf f)

-1.5 -1.0 -0.5 0.5 1.0 1.5
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1.5
4=0
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-0.5
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1.5
µ 0

where uf = ∫ v f dv is the average velocity and φ(v) = 1
4 ∣v∣4 − 1

2 ∣v∣2
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Relative entropy and related quantities

d

dt
Fu[f(t, ⋅)] = −I[f]

Relative entropy with respect to a stationary solution fu

Fu[f] =D∫
Rd
f log (

f

fu
)dv −

1
2
∣uf − u∣

2

Relative Fisher information

I[f] ∶= ∫
Rd

∣D
∇f

f
+ αv ∣v∣2 + (1 − α) v − uf ∣

2
f dv

Non-equilibrium Gibbs state

Gf(v) ∶=
e
− 1
D (

1
2 ∣v−uf ∣2+

α
4 ∣v∣

4
−
α
2 ∣v∣

2
)

∫Rd e
− 1
D (

1
2 ∣v−uf ∣2+

α
4 ∣v∣

4−
α
2 ∣v∣

2)
dv

J. Dolbeault Rates for mean field evolution equations as t→∞
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Stability and coercivity
(X. Li)

Q1,u[g] ∶= lim
ε→0

2
ε2 F[fu(1 + ε g)] =D∫

Rd
g2 fu dv −D

2
∣vg ∣2

where vg ∶= 1
D ∫Rd v g fu dv

Q2,u[g] ∶= lim
ε→0

1
ε2 I[fu (1 + ε g)] =D2

∫
Rd

∣∇g − vg ∣2 fu dv

Stability: Q1,u ≥ 0 ?
Coercivity: Q2,u ≥ λQ1,u for some λ > 0 ?

Q2,u[g] ≥ CD (1 − κ(D))
(vg ⋅ u)2

∣vg ∣2 ∣u∣2
Q1,u[g]

κ(D) < 1 and as a special case, if u = u[f], then

Q2,u[g] ≥ CD (1 − κ(D))Q1,u[g]

J. Dolbeault Rates for mean field evolution equations as t→∞
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An exponential rate of convergence for partially
symmetric solutions in the polarized case

Proposition (X. Li)

Let α > 0, D > 0 and consider a solution f ∈ C0 (R+,L1(Rd)) with
initial datum fin ∈ L1

+(Rd) such that F[fin] < F[f0] and
ufin = (u,0 . . .0) for some u ≠ 0. We further assume that
fin(v1, v2, . . . vi−1, vi, . . .) = fin(v1, v2, . . . vi−1,− vi, . . .) for any i = 2,
3,. . .d. Then

0 ≤ F[f(t, ⋅)] −F[fu] ≤ C e
−λt

∀ t ≥ 0

holds with λ = CD (1 − κ(D)) > 0

J. Dolbeault Rates for mean field evolution equations as t→∞
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an overview

(JD, Mouhot, Schmeiser, 2015)
(Bouin, JD, Mischler, Mouhot, Schmeiser, 2020) Hypocoercivity

without confinement
(Arnold, JD, Schmeiser, Wöhrer) Sharpening of decay rates in

Fourier based hypocoercivity methods

J. Dolbeault Rates for mean field evolution equations as t→∞
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∂f

∂t
+Tf = ∆vf +∇v ⋅ (v f) , Tf ∶= v ⋅ ∇xf − x ⋅ ∇vf

(JD, X. Li) take h = (f/f∗)
2/p, p ∈ (1,2)

∂h

∂t
+Th = Lh + 2 − p

p

∣∇vh∣
2

h
, Lh ∶= ∆vh − v ⋅ ∇vh

Twisted Fisher information

Jλ[h] = (1−λ) ∫Rd ∣∇vh∣
2 dµ+(1−λ) ∫Rd ∣∇xh∣

2 dµ+λ ∫Rd ∣∇xh +∇vh∣
2 dµ

Theorem (JD, Li)
For an appropriate choice of t↦ λ(t), there is a function t↦ ρ(t) > 1
a.e.

d
dt
Jλ(t)[h(t, ⋅)] ≤ −ρ(t)Jλ(t)[h(t, ⋅)] ∀ t ≥ 0

and Jλ(t)[h(t, ⋅)] ≤ J1/2[h0] exp (− ∫
t

0 ρ(s)ds)

J. Dolbeault Rates for mean field evolution equations as t→∞
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(JD, Mouhot, Schmeiser) Π is the orthogonal projection on Ker(L)

ε
dF

dt
+TF =

1
ε

LF

Fε = F0 + εF1 + ε
2 F2 +O(ε3) as ε→ 0+, u = F0 = ΠF0

∂tu + (TΠ)
∗
(TΠ)u = 0

⊳ Main assumption: macroscopic coercivity (Poincaré inequality)
∥TΠF ∥

2
≥ λM ∥ΠF ∥

2

ε = 1: the estimate 1
2
d
dt
∥F ∥2 = ⟨LF,F ⟩ ≤ −λm ∥(1 −Π)F ∥2 is not

enough to conclude that ∥F (t, ⋅)∥2 decays exponentially
The operator A ∶= (1 + (TΠ)∗TΠ)

−1
(TΠ)∗ is such that

⟨ATΠF,F ⟩ ≥
λM

1 + λM
∥ΠF ∥

2

and we can use the L2 entropy / Lyapunov functional
H[F ] ∶= 1

2 ∥F ∥
2
+ δRe⟨AF,F ⟩

J. Dolbeault Rates for mean field evolution equations as t→∞
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H−1-hypocoercivity

⊳ (S. Armstrong and J.-C. Mourrat). Variational methods for the
kinetic Fokker-Planck equation. arXiv:1902.04037, 2019
⊳ (G. Brigati). Time averages for kinetic Fokker-Planck equations
Consider the kinetic-Ornstein-Uhlenbeck equation

∂th + v ⋅ ∇xh = ∆αh ∶= ∆vh − αv ⟨v⟩
α−2

⋅ ∇vh , h(0, ⋅, ⋅) = h0

on R+ × (0, L)d ×Rd (periodic boundary conditions in x) with local
equilibrium γα(v) = Z

−1
α e−⟨v⟩

α

Theorem (Brigati)

Let α ≥ 1, L > 0 and τ > 0. There exists a constant λ > 0 such that, for
all h0 ∈ L2(dxdγα) with zero-average,

⨏

t+τ

t
∥h(s, ⋅, ⋅)∥2

L2(dxdγα)
ds ≤ ∥h0∥

2
L2(dxdγα)

e−λt ∀ t ≥ 0

J. Dolbeault Rates for mean field evolution equations as t→∞
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H−1-hypocoercivity

Ω = (0, τ) × (0, L)d, and α > 0

⊳ Averaging lemma

∥∇t,xρh∥
2
H−1(Ω) ≤ dα (∥h − ρh∥

2
L2(dtdxdγα)

+ ∥∂th + v ⋅ ∇xh∥
2
L2(Ω;H−1

α )
)

⊳ A generalized Poincaré inequality (based on JL Lions’ lemma)

∥h∥2
L2(dtdxdγα)

≤ C (∥h − ρh∥
2
L2(dtdxdγα)

+ ∥∂th + v ⋅ ∇xh∥
2
L2(Ω;H−1

α )
)

J. Dolbeault Rates for mean field evolution equations as t→∞
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With several conservation laws

(Carrapatoso, JD, Hérau, Mischler, Mouhot). Weighted Korn and
Poincaré-Korn inequalities in the Euclidean space and associated
operators. https://hal.archives-ouvertes.fr/hal-03059166
(Carrapatoso, JD, Hérau, Mischler, Mouhot, Schmeiser). Special
modes and hypocoercivity for linear kinetic equations with several
conservation laws and a confining potential
https://hal.archives-ouvertes.fr/hal-03222748

∂f

∂t
+Tf = Lf , Tf ∶= v ⋅ ∇xf −∇xφ ⋅ ∇vf

Collision invariants ∫Rd (1, v, ∣v∣2)Lf dv = 0
Difficulties:
– Rigid motions
– Time periodic solutions (breathers, rotations in phase space) when
φ is quadratic

J. Dolbeault Rates for mean field evolution equations as t→∞
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The Vlasov-Poisson-Fokker-Planck
system

⊳ Linearized Vlasov-Poisson-Fokker-Planck system

⊳ A result in the non-linear case, d = 1

(Addala, JD, Li, Tayeb) L2-Hypocoercivity and large time
asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system.
Preprint hal-02299535 and arxiv: 1909.12762

(Hérau, Thomann, 2016), (Herda, Rodrigues, 2018)

J. Dolbeault Rates for mean field evolution equations as t→∞
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Linearized Vlasov-Poisson-Fokker-Planck system

In collaboration with Lanoir Addala, Xingyu Li and Lazhar M. Tayeb
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Linearized Vlasov-Poisson-Fokker-Planck system
The Vlasov-Poisson-Fokker-Planck system in presence of an external
potential V is

∂tf + v ⋅ ∇xf − (∇xV +∇xφ) ⋅ ∇vf = ∆vf +∇v ⋅ (v f)

−∆xφ = ρf = ∫
Rd
f dv

(VPFP)

Linearized problem around f⋆: f = f⋆ (1 + η h), ∬Rd×Rd hf⋆ dxdv = 0

∂th + v ⋅ ∇xh − (∇xV +∇xφ⋆) ⋅ ∇vh + v ⋅ ∇xψh −∆vh + v ⋅ ∇vh = η∇xψh ⋅ ∇vh

−∆xψh = ∫
Rd
hf⋆ dv

Drop the O(η) term : linearized Vlasov-Poisson-Fokker-Planck /
Ornstein-Uhlenbeck system

∂th + v ⋅ ∇xh − (∇xV +∇xφ⋆) ⋅ ∇vh + v ⋅ ∇xψh −∆vh + v ⋅ ∇vh = 0

−∆xψh = ∫
Rd
hf⋆ dv , ∬

Rd×Rd
hf⋆ dxdv = 0

(VPFPlin)

J. Dolbeault Rates for mean field evolution equations as t→∞
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Hypocoercivity

Let us define the norm

∥h∥
2
∶=∬

Rd×Rd
h2 f⋆ dxdv + ∫

Rd
∣∇xψh∣

2 dx

Theorem

Let us assume that d ≥ 1, V (x) = ∣x∣α for some α > 1 and M > 0. Then
there exist two positive constants C and λ such that any solution h
of (VPFPlin) with an initial datum h0 of zero average with ∥h0∥

2
<∞

is such that
∥h(t, ⋅, ⋅)∥

2
≤ C ∥h0∥

2
e−λt ∀ t ≥ 0

J. Dolbeault Rates for mean field evolution equations as t→∞
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Diffusion limit
Linearized problem in the parabolic scaling

ε∂th + v ⋅ ∇xh − (∇xV +∇xφ⋆) ⋅ ∇vh + v ⋅ ∇xψh −
1
ε
(∆vh − v ⋅ ∇vh) = 0

−∆xψh = ∫
Rd
hf⋆ dv , ∬

Rd×Rd
hf⋆ dxdv = 0

(VPFPscal)
Expand hε = h0 + εh1 + ε

2 h2 +O(ε3) as ε→ 0+. With W⋆ = V + φ⋆

ε−1 ∶ ∆vh0 − v ⋅ ∇vh0 = 0
ε0 ∶ v ⋅ ∇xh0 −∇xW⋆ ⋅ ∇vh0 + v ⋅ ∇xψh0 = ∆vh1 − v ⋅ ∇vh1

ε1 ∶ ∂th0 + v ⋅ ∇xh1 −∇xW⋆ ⋅ ∇vh1 = ∆vh2 − v ⋅ ∇vh2

With u = Πh0, −∆ψ = uρ⋆, w = u + ψ,

u = h0 , v ⋅ ∇xw = ∆vh1 − v ⋅ ∇vh1

from which we deduce that h1 = − v ⋅ ∇xw and

∂tu −∆w +∇xW⋆ ⋅ ∇u = 0

J. Dolbeault Rates for mean field evolution equations as t→∞
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Rates of convergence

J. Dolbeault Rates for mean field evolution equations as t→∞
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Results in the diffusion limit / in the non-linear case

Theorem

Let us assume that d ≥ 1, V (x) = ∣x∣α for some α > 1 and M > 0. For
any ε > 0 small enough, there exist two positive constants C and λ,
which do not depend on ε, such that any solution h of (VPFPscal)
with an initial datum h0 of zero average satisfies

∥h(t, ⋅, ⋅)∥
2
≤ C ∥h0∥

2
e−λt ∀ t ≥ 0

Corollary

Assume that d = 1, V (x) = ∣x∣α for some α > 1 and M > 0. If f
solves (VPFP) with initial datum f0 = (1 + h0) f⋆ such that h0 has
zero average, ∥h0∥

2
<∞ and (1 + h0) ≥ 0, then

∥h(t, ⋅, ⋅)∥
2
≤ C ∥h0∥

2
e−λt ∀ t ≥ 0

holds with h = f/f⋆ − 1 for some positive constants C and λ
J. Dolbeault Rates for mean field evolution equations as t→∞
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
⊳ Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/
⊳ Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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Decay and convergence rates for
kinetic equations

L2 hypocoercivity: what can we do when at least one of the coercivity
conditions (microscopic coercivity or macroscopic coercivity) is
missing ?

In collaboration with Emeric Bouin, Stéphane Mischler, Clément
Mouhot, Christian Schmeiser and Laurent Lafleche

J. Dolbeault Rates for mean field evolution equations as t→∞
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The global picture: from diffusive to kinetic
Depending on the local equilibria and on the external potential

(which are Poincaré type inequalities) can be replaced by other
functional inequalities:
⊳ microscopic coercivity

− ⟨LF,F ⟩ ≥ λm ∥(1 −Π)F ∥
2

Ô⇒ weak Poincaré inequalities or
Hardy-Poincaré inequalities

⊳ macroscopic coercivity

∥TΠF ∥
2
≥ λM ∥ΠF ∥

2

Ô⇒ Nash inequality, weighted Nash or
Caffarelli-Kohn-Nirenberg inequalities

This can be done at the level of the diffusion equation
(homogeneous case) or at the level of the kinetic equation
(non-homogeneous case)

J. Dolbeault Rates for mean field evolution equations as t→∞
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Diffusion (Fokker-Planck) equations

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 1: @tu = �u + r · (urV )

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 2: @tu = �u + r · (urV )

1
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Kinetic Fokker-Planck equations
B = Bouin, L = Lafleche, M = Mouhot, MM = Mischler, Mouhot
S = Schmeiser

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1, or Td

Macro Poincaré

Micro Poincaré
F (v) = e�hvi� , � � 1

BDMMS:
t�d/2

decay

BDS: t�(d��)/2

decay

Cao: e�tb ,
b < 1, � = 2
convergence

DMS,
Mischler-
Mouhot

e��t

convergence

F (v) = e�hvi� ,
� 2 (0, 1)

BDLS: t�⇣ ,
⇣ =

min
�

d
2 , k

�}
decay

F (v) = hvi�d��

BDLS,
fractional
t�⇣ , ⇣ =

min
�

k
2 , 3 d ⇣0

 

⇣0 =
max {6,�+2}

Table 1: @tf + v · rxf = F rv

�
F�1 rvf

�
. Notation: hvi =

p
1 + |v|2

1
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