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The mechanism of cell specialization

Can we describe quantitatively the process of specialization of the cells of an
individual during its development?

• An individual is represented by a point
cloud in SN−1, each point being a cell.

• The i-th coordinate of a point measures
the expression rate of gene i in the as-
sociated cell.

• To a population corresponds a mea-
sure ρ on SN−1, called intensity of the
cloud: ρ(A) = average number of cells
in A in our population.

Question: How to interpolate between these different intensities? Schiebinger &
al. 2019 (Cell), Lavenant & al. 2021 (preprint).
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Regularized unbalanced optimal transport (RUOT)

Let ρ0, ρ1 ∈M+(Td). Our optimization problem reads

Among those fields ρ = ρ(t, x), v = v(t, x), r = r(t, x) satisfying:∂tρ+ div(ρv) =
ν

2
∆ρ+ ρr ,

ρ|t=0 = ρ0, ρ|t=1 = ρ1,

find the ones minimizing:∫ 1

0

∫ {
1
2
|v(t, x)|2 + Ψ(r(t, x))

}
ρ(t, dx) dx dt.

Question: How to chose Ψ?
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Branching Brownian motion (BBM) as a reference model

We want a reference model including both random trajectories for the particles,
and the possibility for them to die or divide.

We choose the model of branching
Brownian motion: each particle of
diffusivity ν > 0 has a random lifetime
of law Exp(λ), λ > 0. When it dies,
it gives birth to k ∈ N particles with
probability pk ∈ [0, 1].

Remark: λ and p could depend on t and x : λ(t, x) dt represents the probability
for a particle in (t, x) to die between t and t+dt. Then, pk(t, x) is the probability
that it is replaced by k particles.
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Entropic minimization w.r.t. BBM

t

x

x2

x1

x3

T

Here, ωT = δx1 + δx2 + δx3 .

• Ω := càdlàg([0, 1];Mδ(Td)), Mδ(Td) being
the set of sums of unitary Diracs on Td .

• If ω ∈ Ω and t ∈ [0, 1], the value ωt of the
curve ω at time t is therefore a sum of Diracs.

• R ∈ P(Ω): law of BBM of parameters ν, λ and
p = (pk)k , of initial law R0 ∈ P(Mδ(Td)).

Fixing the marginals ρ0, ρ1 ∈M+(Td), our minimization problem reads:

Among those P ∈ P(Ω) satisfying for all A ∈ B(Td):

EP [ω0(A)] = ρ0(A) and EP [ω1(A)] = ρ1(A).

find the ones minimizing

H(P|R) := ER

[
dP

dR
log

dP

dR

]
= EP

[
log

dP

dR

]
.

5



Entropic minimization w.r.t. BBM

t

x

x2

x1

x3

T

Here, ωT = δx1 + δx2 + δx3 .

• Ω := càdlàg([0, 1];Mδ(Td)), Mδ(Td) being
the set of sums of unitary Diracs on Td .

• If ω ∈ Ω and t ∈ [0, 1], the value ωt of the
curve ω at time t is therefore a sum of Diracs.

• R ∈ P(Ω): law of BBM of parameters ν, λ and
p = (pk)k , of initial law R0 ∈ P(Mδ(Td)).

Fixing the marginals ρ0, ρ1 ∈M+(Td), our minimization problem reads:

Among those P ∈ P(Ω) satisfying for all A ∈ B(Td):

EP [ω0(A)] = ρ0(A) and EP [ω1(A)] = ρ1(A).

find the ones minimizing

H(P|R) := ER

[
dP

dR
log

dP

dR

]
= EP

[
log

dP

dR

]
.

5



Entropic minimization w.r.t. BBM

t

x

x2

x1

x3

T

Here, ωT = δx1 + δx2 + δx3 .

• Ω := càdlàg([0, 1];Mδ(Td)), Mδ(Td) being
the set of sums of unitary Diracs on Td .

• If ω ∈ Ω and t ∈ [0, 1], the value ωt of the
curve ω at time t is therefore a sum of Diracs.

• R ∈ P(Ω): law of BBM of parameters ν, λ and
p = (pk)k , of initial law R0 ∈ P(Mδ(Td)).

Fixing the marginals ρ0, ρ1 ∈M+(Td), our minimization problem reads:

Among those P ∈ P(Ω) satisfying for all A ∈ B(Td):

EP [ω0(A)] = ρ0(A) and EP [ω1(A)] = ρ1(A).

find the ones minimizing

H(P|R) := ER

[
dP

dR
log

dP

dR

]
= EP

[
log

dP

dR

]
.

5



Entropic minimization w.r.t. BBM

t

x

x2

x1

x3

T

Here, ωT = δx1 + δx2 + δx3 .

• Ω := càdlàg([0, 1];Mδ(Td)), Mδ(Td) being
the set of sums of unitary Diracs on Td .

• If ω ∈ Ω and t ∈ [0, 1], the value ωt of the
curve ω at time t is therefore a sum of Diracs.

• R ∈ P(Ω): law of BBM of parameters ν, λ and
p = (pk)k , of initial law R0 ∈ P(Mδ(Td)).

Fixing the marginals ρ0, ρ1 ∈M+(Td), our minimization problem reads:

Among those P ∈ P(Ω) satisfying for all A ∈ B(Td):

EP [ω0(A)] = ρ0(A) and EP [ω1(A)] = ρ1(A).

find the ones minimizing

H(P|R) := ER

[
dP

dR
log

dP

dR

]
= EP

[
log

dP

dR

]
.

5



Entropic minimization w.r.t. BBM

t

x

x2

x1

x3

T

Here, ωT = δx1 + δx2 + δx3 .

• Ω := càdlàg([0, 1];Mδ(Td)), Mδ(Td) being
the set of sums of unitary Diracs on Td .

• If ω ∈ Ω and t ∈ [0, 1], the value ωt of the
curve ω at time t is therefore a sum of Diracs.

• R ∈ P(Ω): law of BBM of parameters ν, λ and
p = (pk)k , of initial law R0 ∈ P(Mδ(Td)).

Fixing the marginals ρ0, ρ1 ∈M+(Td), our minimization problem reads:

Among those P ∈ P(Ω) satisfying for all A ∈ B(Td):

EP [ω0(A)] = ρ0(A) and EP [ω1(A)] = ρ1(A).

find the ones minimizing

H(P|R) := ER

[
dP

dR
log

dP

dR

]
= EP

[
log

dP

dR

]
.

5



Entropic minimization w.r.t. BBM

t

x

x2

x1

x3

T

Here, ωT = δx1 + δx2 + δx3 .

• Ω := càdlàg([0, 1];Mδ(Td)), Mδ(Td) being
the set of sums of unitary Diracs on Td .

• If ω ∈ Ω and t ∈ [0, 1], the value ωt of the
curve ω at time t is therefore a sum of Diracs.

• R ∈ P(Ω): law of BBM of parameters ν, λ and
p = (pk)k , of initial law R0 ∈ P(Mδ(Td)).

Fixing the marginals ρ0, ρ1 ∈M+(Td), our minimization problem reads:

Among those P ∈ P(Ω) satisfying for all A ∈ B(Td):

EP [ω0(A)] = ρ0(A) and EP [ω1(A)] = ρ1(A).

find the ones minimizing

H(P|R) := ER

[
dP

dR
log

dP

dR

]
= EP

[
log

dP

dR

]
.

5



Equivalence of the models

RUOT

Let ν > 0 and Ψ a function.
Find (ρ, v , r) s.t.∂tρ+ div(ρv) =

ν

2
∆ρ+ ρr ,

ρ|t=0 = ρ0, ρ|t=1 = ρ1,

minimizing∫ 1

0

∫ {
|v |2

2
+ Ψ(r)

}
ρ dx dt.

Branching Schrödinger

R BBM of initial law R0, of parame-
ter ν, λ and p.
Find P ∈ P(Ω) s.t.

EP [ωi (A)] = ρi (A), i = 0, 1,

minimizing H(P|R).

Main result (BL): If Ψ is defined via its Legendre transform by:

Ψ∗(s) = νλ
∑

pk
{
e(k−1) s

ν − 1
}
,

The minimum in RUOT is the l.s.c. relaxation of the infimum in Branching
Schrödinger, up to an initial term.
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A few ideas

Changing the law: Let us call q = λp.

Let P be the law of the BBM of drift
v = v(t, x), whose branching events are describe by q̃ = q̃(t, x), and of initial
law P0, then calling ρ(t) := EP [ωt ] and r(t, x) :=

∑
k(k − 1)qk , we have:

∂tρ+ div(ρv) =
ν

2
∆ρ+ ρr ,

νH(P|R) = νH(P0|R0) +

∫ 1

0

∫ {
1
2
|v(t, x)|2 + h(q̃(t, x)|q)

}
ρ(t, dx) dx dt,

where h(q̃|q) :=
∑
k

q̃k log
q̃k
qk

+ qk − q̃k .

Observation: Provided Ψ is defined as before,

Ψ(r) = inf
{
h(q̃|q) :

∑
(k − 1)q̃k = r

}
.

A counter-example to equality: In RUOT, we can connect 0 to ρ1 6= 0. In
branching Schrödinger it is not possible.
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Conclusion

• By studying the rare events of the branching Brownian motion, we derived
a specific cost in a model of regularized and unbalanced optimal transport
model, that seems natural in some applications.

• In the regime ν → 0, λ ∼ exp(−1/ν), we recover optimal partial
transport at the PDE level.

• Now, we want to include more biology in the model. Ex: replace the
Brownian trajectories in the space of gene expressions by more relevant
ones.
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