Navigation of Flagellated Micro-Swimmers

Laetitia Giraldi INRIA Sophia Antipolis Méditerranée Experimental part at ISIR (Paris)

June 2021

Challenges of micro-swimming

- Medical applications : driving micro-robots through our body
- Multidisciplinary fields (Maths, Physics, Biology and Robotic)
- Biomimetism

Flagellated locomotion

- Breakthrough \rightarrow in vivo experiments
- Problems : rigid robots
- The hope of the flagellated locomotion?
 - Capability to adapt the strategy
- How to control a flagellated robot?
 - Mathematical modeling
 - Control optimization tools

[B. Nelson et al., 2015]

[I. S. M. Khalil et al. 2019]

Content

- 1. Optimization/Control of the magnetic micro-robot with Y. El Alaoui Faris, J.-B. Pomet, S. Régnier
- 2. Accurate simulations for articulated/flagellated swimmer with L. Berti, V. Chabannes, C. Prud'Homme
- 3. Smart swimmer in a turbulent flow with J. Bec, R. Chesneaux

Artificial flexible magnetic micro-swimmers

- Imitate a sperm cell propulsion
- Flexible tail + magnetized head
- Magnetic field for producing a flagella-beat waveform
- \blacktriangleright Length \sim 7mm Thickness \sim 1.5mm
 - \rightarrow Highly viscous fluid
 - \rightarrow Low Reynolds Number

Experimental swimmer, ISIR, Sorbonne university, Paris (S. Régnier)

Experimental Setup - Magnetic Field Generation

3 orthogonal Helmholtz coils.

2 cameras.

Controlling using a sinusoidal field

 $B_{\parallel}\mathbf{x}_{\parallel} + B_{\perp}\sin(2\pi f t)\mathbf{x}_{\perp}$

- Planar displacement (x_{||}-direction)
- Frequency (f) \Rightarrow deformation \Rightarrow displacement

[A. Oulmas, N. Andreff, S. Régnier, 2016]

Challenges

- Symmetric field produces a symmetric deformation
- \blacktriangleright \Rightarrow a transversal deplacement

Sinusoidal field to control the flexible swimmer

- is not optimized
- does not work in the case of complex geometry / bodily fluid

Content

Question

How to find another magnetic field to drive a magnetic flexible micro-swimmer ?

Answer Optimization problem

Difficulties for predictions

- Hydrodynamic : interaction between fluid and swimmer
- Elasticity : tail's deformation deriving from the magnetic field

Full Mathematical Model

Fluid equations

$$\begin{cases} \rho(\partial_t u + u \cdot \nabla u) - \mu \Delta u + \nabla p = 0, & \text{in } \mathcal{F}_t, \\ \nabla \cdot u = 0, & \text{in } \mathcal{F}_t, \\ u = U(t), & \text{on } \partial \mathcal{N}_t, \\ m \dot{\mathbf{v}} = -F_{fluid}, \\ J \dot{\Omega} = -M_{fluid}, \end{cases}$$

where $U := \mathbf{v} + \Omega \times (x - x^{CM}(t)) + u_d(t)$

Hyper-elasticity equations

$$\left\{ \rho_s \frac{\partial^2 \eta}{\partial t^2} - \nabla_X \cdot (F\Sigma) = F_{prop} \,, \qquad \text{on } \mathcal{N}_0. \right.$$

Coupling

$$\begin{cases} \frac{\partial \eta}{\partial t} = u_d(t, x), & \text{ on } \partial \mathcal{N}_0, \\ F \Sigma n = \sigma_f n, & \text{ on } \partial \mathcal{N}_0. \end{cases}$$

Modeling : main ingredients

- Discretization of the shape
 - 2D N-link swimmer [Alouges, DeSimone, Giraldi, Zoppello, 2013]
 - 3D N-link swimmer [Y. El Alaoui-Faris, J.B. Pomet, S. Régnier, L. Giraldi, 2020]

- Hydrodynamics (h) : Resistive Force Theory
- Elasticity (el) : spring at the junctions
- Magnetism (m) : torques which tend to align the magnet

Dynamics

The dynamics of the micro-robot is governed by an ODE linear with respect to the external magnetic field (i.e., control function **B**) with a drift term,

$$\begin{pmatrix} \dot{\mathbf{X}} \\ \dot{\mathbf{\Theta}} \\ \dot{\mathbf{\Phi}} \end{pmatrix} = \underbrace{\mathbf{F}_0(\mathbf{\Theta}, \mathbf{\Phi})}_{\text{Restoring force}} + \mathbf{F}_1(\mathbf{\Theta}, \mathbf{\Phi}) \mathbf{B}(t)$$

Avantage

Easy to assemble and to compute

Inconvenient

Lose complexity of surrounding fluid environnement

RFT in good agreement

Goal : match the propulsion characteristics

 \rightarrow Velocity-Frequency response to a sinusoidal magnetic field \rightarrow Identification of elastic and hydrodynamical parameters

Optimal control problem

▶ for a given *T*, find **B** in such a way that the mean speed of the swimmer is maximized for a x-displacement

$$\begin{cases} \min -\frac{x(T)}{T} \\ \begin{bmatrix} \dot{\mathbf{X}} \\ \dot{\mathbf{\Theta}} \\ \dot{\mathbf{\Phi}} \end{bmatrix} = \mathbf{F}(\mathbf{\Theta}, \mathbf{\Phi}, \mathbf{B}) \\ \mathbf{B} \text{ bounded} \\ \text{ orientation and shape T-periodic } \leftrightarrow \text{ stroke constraint} \end{cases}$$

With this framework, there are many approaches

Several approaches

- Using Pontryaguine principle (or equivalently Lagrange equations)
 [Alouges, Difratta, 2019]
 [Alouges, DeSimone, Giraldi, Or, Weizel, 2019]
 [Loheac and al., 2012]
- Using a direct method
 [Giraldi, Martinon, Zoppello, 2015]
 [Alouges, DeSimone, Heltai, 2013]
- Performing the optimization on specific family of functions [Tam, Hosoi, 2007]

Difficulties

To take into account the fluid-swimmer interaction constrains

Numerical solving and experimental implementation

Direct method

 \rightarrow Discretization of the problem + resolution

 ICLOCS solver + IPOPT for the NLP [ICLOCS, P. Falugi, E. Kerrigan, E. Van Wyk, 2010]

Numerical Solution -Magnetic Fields

Numerical Solution - Trajectory

Experimental Results - Horizontal Displacements

To further - Challenges

- Non-planar actuation allows a faster propulsion speed
- simple RFT-based dynamic model is enough
- How to take into account complex environmement?
- $\blacktriangleright \hookrightarrow \mathsf{Accurate} \mathsf{ models}$
- Navier-Stokes equations
- non-Newtonian fluid

Full Mathematical Model

Fluid equations

$$\left\{ \begin{array}{ll} \rho(\partial_t u + u \cdot \nabla u) - \mu \Delta u + \nabla p = 0, & \text{ in } \mathcal{F}_t, \\ \nabla \cdot u = 0, & \text{ in } \mathcal{F}_t, \\ u = U(t), & \text{ on } \partial \mathcal{N}_t , \\ m \dot{\mathbf{v}} = -F_{\textit{fluid}}, \\ J \dot{\Omega} = -M_{\textit{fluid}}, \end{array} \right.$$

where $U := \mathbf{v} + \Omega \times (x - x^{CM}(t)) + u_d(t)$

Hyper-elasticity equations

$$\left\{ \rho_s \frac{\partial^2 \eta}{\partial t^2} - \nabla_X \cdot (F\Sigma) = F_{prop} \,, \qquad \text{on } \mathcal{N}_0. \right.$$

Coupling

$$\begin{cases} \frac{\partial \eta}{\partial t} = u_d(t, x), & \text{on } \partial \mathcal{N}_0, \\ F \Sigma n = \sigma_f n, & \text{on } \partial \mathcal{N}_0. \end{cases}$$

Step I : prescribed deformation - fluid part

$$\begin{split} \rho(\partial_t u|_{\mathcal{A}} + (u - u_{\mathcal{A}}) \cdot \nabla u) - \mu \Delta u + \nabla p &= 0, & \text{in } \mathcal{F}_t, \\ \nabla \cdot u &= 0, & \text{in } \mathcal{F}_t, \\ u &= U \circ \mathcal{A}_t, & \text{on } \partial \mathcal{N}_t, \\ m \dot{\mathbf{v}} &= -F_{\textit{fluid}}, \\ J \dot{\Omega} &= -M_{\textit{fluid}}, \end{split}$$

Numerical methods to simulate the swimmer motion

- ODE Solver RFT [Desimone et al. 2015 ...]
 - Impossibility to take into account the complexity of the environnement
 - Impossibility to take into account the complexity of swimmer's shape
- Boundary element methods [Pozrikidis 2002, Ishimoto et al. 2016, Alouges et al. 2020 ...]
 - Only for Stokes equations
 - Impossibility to take into account the elasticity of the structure
- Finite element methods
 [A. Iollo et al. 2016, Prud'Homme et al. 2018, ...]

Numerical methods

- Generalizing [Maury, 2000]
- Time discretization
- \blacktriangleright Spatial discretization \rightarrow conforming Lagrange finite elements
- $\blacktriangleright Moving domain \rightarrow Arbitrary-Lagrangian-Eulerian technics$
- Mesh (using MMG)
 - Mesh quality indices
 - Re-meshing metric \rightarrow distance to the swimmer
 - Interpolating
- Feel++

Algebraic strategy

$$\underbrace{\mathcal{P}^{\mathsf{T}}A\mathcal{P}}_{\mathcal{A}}\begin{bmatrix}\mathbf{u}_{I}\\\mathbf{u}_{\Gamma}\\\mathbf{U}\\\boldsymbol{\omega}\\\boldsymbol{p}\end{bmatrix}=\mathcal{P}^{\mathsf{T}}\begin{bmatrix}G_{I}\\G_{\Gamma}\\0\\0\\0\end{bmatrix}.$$

- Requires efficient implementation of $\mathcal{P}^T A \mathcal{P}$ in parallel
- Use a block preconditioner of type PCD or PMM

Results

FIGURE: Three-sphere swimmer and its swimming gait.

Problems

- Hight numerical complexity
- Optimize control are challenging tasks
- \blacktriangleright \rightarrow Machine learning tools

Preliminary work : learn in a turbulent flow

Cosserat equations for thin inextensible fiber

$$\sigma \partial_t^2 \mathbf{X} = -\zeta \mathbb{R} \left[\partial_t \mathbf{X} - \mathbf{u}(\mathbf{X}, t) \right] + \partial_s (T \partial_s \mathbf{X}) - K \partial_s^4 \mathbf{X} + \mathbf{f}(s, t).$$

with $\partial_s^2 \mathbf{X}(s,t) = 0$ and T(s,x) = 0 at the extremities

- Slender body theory [A. Lindner and M. J. Shelley, 2015]
- Reinforcement Learning
- Problem of the chaoticity of the system (fluid-swimmer)

Thank you for your attention

https://www-sop.inria.fr/members/Laetitia.Giraldi/