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introduction



epidemic control

Impact of the epidemic. Cost for the society:

• cost of care related to the disease;
• indirect costs related to the saturation of the hospital system;
• but also a cost for the individual, not necessarily monetary, linked to the
infection (QALY/DALY).

▶ How to control this epidemic, in order to limit these costs?

Lockdown and social distancing. While waiting for:

• an effective treatment against the disease induced by the virus;
• a vaccination campaign...

▶Many countries have implemented restrictions on travel and social distanc-
ing between individuals to limit the spread of the epidemic.

Impact of social distancing. These restrictions have a cost for individuals:
social and economic, but also in terms of (mental) health (no in-person con-
ferences at La Grande Motte).
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different points of view

Epidemic control via social distancing: political or individual choice?

▶ Societal Optimum. Recent literature focuses on the search for a societal
optimum – Viewpoint of a global planner. Bonnans and Gianatti [2] (2020),
Charpentier et al. [3] (2020), Djidjou-Demasse et al. [4] (2020)...

▶ Without guidelines? Individual point of view, with R. Elie and G. Turinici.
▶ Modeling individual choices towards the epidemic spread, and look for a
Nash – Mean-field equilibrium among the population.

▶ Cost of anarchy: Nash equilibrium different from societal optimum...

How can we make the interests of the population converge towards the
interests of the society?

▶ Governmental point of view and incentives, with T. Mastrolia, D. Possamaï
and X. Warin.
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the principal-agent model

Noteworthy papers (in continuous-time): Holmström and Milgrom [5] (1987),
Sannikov [6] (2008).
▶ Analyse interactions between economic agents, in particular with asym-
metric information.

The Principal (she) initiates a contract for a period [0, T].
The Agent (he) accepts or not the contract proposed by the Principal.

The Principal must suggest an optimal contract: maximises her utility, and
that the Agent will accept (reservation utility).

Asymmetry of information.
Moral Hazard: the Agent’s behaviour is not observable by the Principal.
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moral hazard in continuous-time: a toy model

Output process: Stochastic process X with dynamic, for t ∈ [0, T]:

dXt = αtdt+ σtdWt.

Effort: given a contract ξ, the Agent controls X through the drift α, in order to
maximise the following criteria:

EPα
[
UA(ξ)−

∫ T

0
c(αt)dt

]
.

Moral Hazard: the Principal only observes X in continuous-time.

▶ The contract (terminal payment) ξ can only be indexed on X.
▶ The optimal form of contracts for the Agent satisfies (see [5, 6]):

UA(ξ) = Y0 −
∫ T

0
H(Zs)ds+

∫ T

0
ZsdXs, (1)

where

(i) Y0 ∈ R is chosen by the principal to ensure participation of the agent;
(ii) Z is chosen by the Principal to encourage effort from the agent;
(iii) H is the Agent’s Hamiltonian.
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the model: sir and principal-agent



epidemic model

▶ SIR compartment model: during the epidemic, individuals go from “Sus-
ceptible” to “Infected” and then “Recovered”.

Susceptible Infected Recovered

Figure: SIR model

▶ Dynamic of a stochastic SIR model:
dSt = −βt

√
αtStItdt+ σαtStItdWt,

dIt = (βt
√
αtSt − γ)Itdt− σαtStItdWt,

dRt = γItdt,
for t ∈ [0, T].

Initial distribution (S0, I0,R0) at time t = 0 known, s.t. S0 + I0 + R0 = 1.
▶ St + It + Rt = 1 for all t ≥ 0.

▶ 3 main parameters to describe the dynamics of the epidemic: γ, β and α.
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parameters of the epidemic: recovery rate


dSt = −βt

√
αtStItdt+ σαtStItdWt,

dIt = (βt
√
αtSt − γ)Itdt− σαtStItdWt,

dRt = γItdt,
for t ∈ [0, T].

▶ Recovery rate γ. Exogenous, constant, assumed known, and given by

γ :=
1

duration of the contagious period .

▶ In absence of an effective treatment against the disease induced by the
virus, no possibility to control γ.
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parameters of the epidemic: transmission rate


dSt = −βt

√
αtStItdt+ σαtStItdWt,

dIt = (βt
√
αtSt − γ)Itdt− σαtStItdWt,

dRt = γItdt,
for t ∈ [0, T].

▶ Transmission rate β. Endogenous, and time-dependent (in contrast to the
classical SIR models).

Depends on:

(i) intrinsic characteristics of the disease;
(ii) “contact rate” between individuals.

▶ The population can make a costly effort to reduce their interactions and
thus decrease the effective transmission rate of the virus.

▶ We assume that β takes values in [0, β0], where β0 is the “initial”
transmission rate, when the population makes no social distancing effort.
▶ Limiting case: if individuals are fully isolated, then β = 0 and the virus
does not spread.
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parameters of the epidemic: “uncertainty rate”


dSt = −βt

√
αtStItdt+ σαtStItdWt,

dIt = (βt
√
αtSt − γ)Itdt− σαtStItdWt,

dRt = γItdt,
for t ∈ [0, T].

▶ “Uncertainty rate” α. By increasing testing among the population, the
government can:

(i) to reduce the uncertainty related to the spread of the epidemic, i.e. σαt;
(ii) to isolate those who test positive and thus reduce the effective spread

rate, i.e. βt
√
αt.

▶ We assume that α takes values in [0, 1]:

• α = 1 means no testing policy;
• limiting case: if all individuals are tested regularly, the spread of the
epidemic is precisely known (without randomness), and isolation of
positive individuals stop the propagation, i.e. α → 0.
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a principal-agent problem with moral hazard

▶ The population – the agent – controls the transmission rate β.

▶ The government – the principal – observes (S, I,R) (not β) and implements
two policies:

(i) a testing policy α, which enables
• to reduce the uncertainty related to the spread of the epidemic;
• to isolate those who test positive and thus reduce the effective spread
rate;

(ii) a tax policy χ to encourage the population to lockdown.

▶ Stackelberg equilibrium.

(i) Given a pair (α, χ) fixed by the government, solve the population’s opti-
misation problem to find the optimal transmission rate β⋆(α, χ).

(ii) Given the optimal response of the population to any couple (χ, α), solve
the government’s problem to find the optimal couple (χ⋆, α⋆).
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resolution



population optimisation problem

▶ Given a testing policy α and a tax policy χ, the population’s optimal control
problem is:

VA
0 (α, χ) := sup

β∈B
E
[ ∫ T

0
u(t, βt, It)dt+ U(−χ)

]
, (2)

where u : [0, T]× [0, β0]× R+ −→ R and U : R −→ R are given by:

u(t,b, i) := − 1
2
(
i3 + (β0 − b)2

)
and U(x) := 1− e−4x

4 +
1
2x.

▶ Interpretations:

(i) the utility is zero when there is no epidemic, i.e. I = 0;
(ii) the population is scared by a large number of infected – term i3 in u;
(iii) an increase in the tax lowers the utility – U increasing function;
(iv) a decrease in the level of interaction (below β0) lowers the utility – u

increasing w.r.t. b ≤ β0.
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optimal tax policy

▶ HJB technics and BSDEs theory...

Main theoretical result. Given an admissible contract (α, χ), there exist a
unique Y0 and Z such that:

U(−χ) = Y0 −
∫ T

0

(
γZtIt + u(t, β⋆

t , It)− β⋆
t
√
αtStItZt

)
dt−

∫ T

0
ZtdIt, (3)

where β⋆ is the (unique) optimal contact rate for the population.

Optimal effort. For all t ∈ [0, T], β⋆
t := b⋆(t, St, It, Zt, αt) is the maximiser of:

b ∈ [0, β0] 7−→ u(t,b, It)− b
√
αtStItZt.

▶ Under some assumptions for existence and smoothness of the inverse of
the function U, (3) gives a representation for the tax χ.

15
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b ∈ [0, β0] 7−→ u(t,b, It)− b
√
αtStItZt.

▶ Under some assumptions for existence and smoothness of the inverse of
the function U, (3) gives a representation for the tax χ.
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government optimisation problem

▶ Given a tax χ and a testing policy α chosen by the government:

• the optimal form for the tax χ satisfies (3), i.e., the government only has
to choose Z and Y0;

• the optimal effort of the population is given by β⋆
t := b⋆(t, St, It, Zt, αt) for

all t ∈ [0, T], and thus the epidemic spreads with the transmission rate
β⋆√α.

▶ It remains to solve the government problem to find the optimal Y0, Z and
α.

16



government optimisation problem

▶ Given a tax χ and a testing policy α chosen by the government:

• the optimal form for the tax χ satisfies (3), i.e., the government only has
to choose Z and Y0;

• the optimal effort of the population is given by β⋆
t := b⋆(t, St, It, Zt, αt) for

all t ∈ [0, T], and thus the epidemic spreads with the transmission rate
β⋆√α.

▶ It remains to solve the government problem to find the optimal Y0, Z and
α.

16



government optimisation problem

▶ Given a tax χ and a testing policy α chosen by the government:

• the optimal form for the tax χ satisfies (3), i.e., the government only has
to choose Z and Y0;

• the optimal effort of the population is given by β⋆
t := b⋆(t, St, It, Zt, αt) for

all t ∈ [0, T], and thus the epidemic spreads with the transmission rate
β⋆√α.

▶ It remains to solve the government problem to find the optimal Y0, Z and
α.

16



government optimisation problem

▶ The government chooses the parameter Y0 and Z in the tax χ, as well as α
to maximise her utility:

VP
0 := sup

Y0,Z,α
E
[
χ−

∫ T

0

(
c(It) + k(αt)

)
dt
]
, (4)

where k(a) := κg(a−ηg − 1), and c(i) := cg(i+ i2).

▶ Interpretations:

(i) the utility is zero when there is no epidemic, i.e. I0 = 0;
(ii) an increase in the tax increase the utility;
(iii) the principal pay a linear cost per infected individual, plus a quadratic

cost to represent saturation of health care facilities;
(iv) testing is costly – k increases when α decreases.
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government optimisation problem

▶ In contrast to usual PA problems, the government implements a mandatory
tax: the population cannot refuse it.
▶ Nevertheless, the government is “benevolent”: she will choose Y0 in order
to ensure a sufficient level v of utility for the agent.
▶ In particular, v is defined by the agent’s utility in the event of an uncon-
trolled epidemic, i.e., β = β0, α = 1, and χ = 0.

Results.

▶ Theoretically: PDE obtained through HJB technics.
▶ Numerically: semi–Lagrangian schemes, with truncated higher–order in-

terpolators, as proposed by Warin [7] (2016).
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some numerical results: proportion of infected individuals

Without governmental intervention With incentives but without testing

With incentives and testing Without moral hazard (first–best)
19



limits and extensions



limits and extensions

On the epidemic modelling.
▶ Uncertainty about the parameters, especially when the epidemic is of a
new kind.
▶ Viability of SIR, SEIR models? COVID-19 has many other features, for e.g.
large number of asymptomatic.

On the population’s side.
▶ Rational population, perfect knowledge of the dynamics of the epidemic...
▶ Individual’s costs are hard to measure and calibrate.

On the government’s side.
▶ Better assess the costs faced by states: hospital saturation costs, economic
cost of lockdown...

Extensions.

• Model by Aurell et al. [1] (2020) that combines MFG in the population and
incentives.

• What about vaccination?
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