
Infinite-dimensional Luenberger observers:
application to a crystallization process
SMAI Minisymposium: Control, observation and stabilization

Lucas Brivadis, lucas.brivadis@univ-lyon1.fr,
LAGEPP, CNRS UMR 5007, Université Claude Bernard Lyon 1

June 25, 2021

In collaboration with Ludovic Sacchelli



Problem statement



Problem statement
Luenberger observer and BFN

Conclusion and perspectives

Introduction
Modeling the CLD
Evolution model

Introduction

Context: During a batch crystallization process, the estimation of the
Particle Size Distribution (PSD) is critically important in the industry.

Crystals in the reactor
during the process
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Distribution in characteristic size

Objective: Design an observer to estimate the PSD from an other
measurement: the Chord Length Distribution (CLD).
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Modeling the CLD

By the law of total expectation, the PSD-to-CLD map C is given by:

P(L 6 `) =
∫ rmax

rmin

P(L 6 `|R = r)z(r)dr

where
k(`, r) = P(L 6 `|R = r).

The kernel k(`, r) depends on particle geometry.
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Modeling the CLD

We propose a model for spheroid particles.

Step 1: Choose an orientation of the spheroid with respect to the probe.
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where η is the shape parameter.
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Step 2: Choose a chord on the projection of the spheroid.
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Probabilistic model:

kη(`, r) = 1−
∫ 2π

ϕ=0

∫ π

θ=0

√
1−

(
`

2r

)2
αη(ϕ, θ) sin θ

4π dθdϕ

Proposition (Brivadis, Sacchelli, 2021).
For any shape parameter η, the operator Cη is injective.

" Since C is compact, it has no continuous left-inverse. But one can
use a regularization method, such as Tikhonov regularization:

z = argmin
ẑ

∥∥∥y − Cη ẑ
∥∥∥2

L2
+ δ2‖ẑ‖2

L2
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Modeling the CLD

Issue: Due to polymorphism, it frequently occurs that particles in the
reactor have different shapes.

Obstacle: There isn’t enough information in the CLD to recover PSDs if
there are multiple shapes in suspension.
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Figure 1: Crystallization process at t = 50 min1

1Experiment LG34, Y. Tahri PhD thesis, 2016
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Figure 1: Crystallization process at t = 70 min1

1Experiment LG34, Y. Tahri PhD thesis, 2016
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Figure 1: Crystallization process at t = 80 min1

1Experiment LG34, Y. Tahri PhD thesis, 2016
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Figure 1: Crystallization process at t = 110 min1

1Experiment LG34, Y. Tahri PhD thesis, 2016
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Figure 1: Crystallization process at t = 130 min1

1Experiment LG34, Y. Tahri PhD thesis, 2016
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Figure 1: Crystallization process at t = 345 min1

1Experiment LG34, Y. Tahri PhD thesis, 2016
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Population balance equation:
∂tzi(t, r) = −Gi(t, r)∂r zi(t, r)
zi(0, r) = zi,0(r), ∀r ∈ [r i

min, rmax]
zi(t, r i

min) = ui(t), ∀t ∈ [0, tmax]

• zi(t): PSD of particles of
shape 1 6 i 6 N for
t ∈ [0, tmax]

• Gi(t, r): grow rate
• ui : nucleation at r i

min

Crystal growth

Nucleation

r
rmaxr i

min

zi
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Observer design

Infinite-dimensional linear time-varying system:{
ż = A(t)z , z0 ∈ X
y = Cz

Luenberger observer:{ ˙̂z = A(t)ẑ − αC∗Cε, ẑ0 ∈ X
ε̇ = (A(t)− αC∗C)ε, ε0 = ẑ0 − z0

• X and Y are Hilbert spaces, C ∈ L (X ,Y )
• A(t) : D(A)→ X generates an evolution system (T(t, s))t>s>0

• z , ẑ , ε ∈ C0(R+; X )

Example: X = L2(rinf , rmax)N , Y = L2(`min, `max),
A(t) = diag(−Gi(t, r)∂r ), and C = 〈k(`, ·), ·〉L2(rmin,rmax)

Lucas BRIVADIS 10 / 18
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Observer design

Definition (Exact observability).
The system is exactly observable on [t0, t0 + τ ] if for some k > 0,∫ t0+τ

t0

‖CT(t, t0)z0‖2
Y dt > k‖z0‖2

X , ∀z0 ∈ X

Proposition. (Brivadis, Andrieu, Serres, Gauthier, 2021)
Since k is bounded, the crystallization process is not exactly observable.

Definition (Approximate observability).

O =
{

z0 ∈ X |
∫ t0+τ

t0

‖CT(t, t0)z0‖2
Y dt = 0

}⊥
The system is approximately observable on [t0, t0 + τ ] if O = X .

Lucas BRIVADIS 11 / 18
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Back and Forth Nudging

Inverse problem: How to estimate z(t) from the knowledge of y(t)
over a bounded time interval [0, τ ]?

Observer approach: Forward and backward Luenberger observers

Assume that A(t) is the generator of a bidirectional evolution system.

∀n ∈ N, ∀t ∈ [0, τ ],

If n is even,


˙̂zn = A(t)ẑn − αC∗(Cẑn − y(t))

ẑn(0) =
{

ẑn−1(0) if n > 1,
ẑ0 otherwise.

If n is odd,
{ ˙̂zn = A(t)ẑn + αC∗(Cẑn − y(t))

ẑn(τ) = ẑn−1(τ)

Lucas BRIVADIS 12 / 18
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Back and Forth Nudging

If 〈A(t)z , z〉X 6 p ‖Cz‖2
Y for some p > 0 (weak detectability), then

1
2

d
dt ‖ε(t)‖2

X 6 −(α− p) ‖Cε(t)‖2
Y

Theorem (Brivadis, Andrieu, Serres and Gauthier, 2021).
Assumption:

• Both ((A(t))t>0,C) and ((−A(t))t>0,C) are weakly detectable

Let O be the observable subspace of (T,C) over [0, τ ]. Then

〈εn(t), ψ〉X −→
n→+∞

0, ∀ε0 ∈ X , ∀ψ ∈ O, ∀t ∈ [0, τ ].

Lucas BRIVADIS 13 / 18
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Application to the crystallization process

Theorem (Brivadis, Sacchelli, 2021).
Assumptions:

• Only two clusters of crystals: i ∈ {1, 2}, N = 2
• Gi(t, r) = gi f (t)h(r), gi 6= 0, f in C2 has a finite number of zeros

and h(r) = 1/rm, m > 0.

Then H2(rinf , rmax) lies in the observable subspace of the system over any
positive time interval if:

• gi > 0, h(r) = 1, r1
min = r2

min, η1 = 1 and η2 > 1
or
• (r1

min)2A(η2) 6= (r2
min)2A(η1) with

{
A(η) = 1 if η > 1
A(η) = 1/η2 if η < 1

and (gi > 0 and m is even) or (gi < 0 and m is odd)
Thus, the back and forth observer converges in the weak topology for
initial conditions in H2(rinf , rmax).

Lucas BRIVADIS 14 / 18
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200 successive estimates of the PSDs as returned by the BFN algorithm.
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Conclusion and perspectives

• We propose a model of the PSD-CLD mapping for spheroids.

• The Back and Forth Nudging algorithm can employed to recover
the PSD from the CLD in the multi-shape case.

• Weak convergence has been proved for various pairs of shapes.
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Conclusion and perspectives

Some open questions about the theoretical results:

• Speed of convergence
• Unbounded operator C
• Online back and forth observer

Some open questions about the application:

• Crystals with other shapes
• Test different probability models
• Observability analysis with spheroids
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Thank you for your attention
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