Infinite-dimensional Luenberger observers: application to a crystallization process

SMAI Minisymposium: Control, observation and stabilization

Lucas Brivadis, lucas.brivadis@univ-lyon1.fr, LAGEPP, CNRS UMR 5007, Université Claude Bernard Lyon 1

June 25, 2021

In collaboration with Ludovic Sacchelli

Problem statement

Introduction Modeling the CLD Evolution model

Introduction

Context: During a batch crystallization process, the estimation of the Particle Size Distribution (PSD) is critically important in the industry.

Crystals in the reactor during the process

Objective: Design an observer to estimate the PSD from an other measurement: the Chord Length Distribution (CLD).

Introduction Modeling the CLD Evolution model

Introduction

Context: During a batch crystallization process, the estimation of the Particle Size Distribution (PSD) is critically important in the industry.

Crystals in the reactor during the process

Distribution in characteristic size

Objective: Design an observer to estimate the PSD from an other measurement: the Chord Length Distribution (CLD).

Introduction Modeling the CLD Evolution model

Modeling the CLD

Presentation of the CLD sensor (FBRM)

Introduction Modeling the CLD Evolution model

Modeling the CLD

By the **law of total expectation**, the PSD-to-CLD map *C* is given by:

$$\mathbb{P}(L \leq \ell) = \int_{r_{\min}}^{r_{\max}} \mathbb{P}(L \leq \ell | R = r) z(r) \mathrm{d}r$$

where

$$k(\ell,r) = \mathbb{P}(L \leq \ell | R = r).$$

Introduction Modeling the CLD Evolution model

Modeling the CLD

By the **law of total expectation**, the PSD-to-CLD map *C* is given by:

$$y(\ell) = \mathbb{P}(L \leq \ell) = \int_{r_{\min}}^{r_{\max}} \mathbb{P}(L \leq \ell | R = r) z(r) dr$$

where

$$k(\ell,r) = \mathbb{P}(L \leq \ell | R = r).$$

Introduction Modeling the CLD Evolution model

Modeling the CLD

By the **law of total expectation**, the PSD-to-CLD map *C* is given by:

$$y(\ell) = \mathbb{P}(L \leq \ell) = \int_{r_{\min}}^{r_{\max}} k(\ell, r) z(r) \mathrm{d}r = (Cz)(\ell).$$

where

$$k(\ell, r) = \mathbb{P}(L \leq \ell | R = r).$$

Introduction Modeling the CLD Evolution model

Modeling the CLD

By the **law of total expectation**, the PSD-to-CLD map *C* is given by:

$$y(\ell) = \mathbb{P}(L \leq \ell) = \int_{r_{\min}}^{r_{\max}} k(\ell, r) z(r) \mathrm{d}r = (Cz)(\ell).$$

where

$$k(\ell, r) = \mathbb{P}(L \leq \ell | R = r).$$

Introduction Modeling the CLD Evolution model

Modeling the CLD

We propose a model for **spheroid** particles.

Step 1: Choose an orientation of the spheroid with respect to the probe.

where η is the **shape parameter**.

Introduction Modeling the CLD Evolution model

Modeling the CLD

Step 2: Choose a chord on the projection of the spheroid.

Introduction Modeling the CLD Evolution model

Modeling the CLD

Probabilistic model:

$$k_{\eta}(\ell, r) = 1 - \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \sqrt{1 - \left(\frac{\ell}{2r}\right)^2 \alpha_{\eta}(\varphi, \theta)} \frac{\sin \theta}{4\pi} \mathrm{d}\theta \mathrm{d}\varphi$$

Proposition (Brivadis, Sacchelli, 2021). For any shape parameter η , the operator C_{η} is injective.

▲ Since C is compact, it has no continuous left-inverse. But one can use a regularization method, such as **Tikhonov regularization**:

$$z = \underset{\hat{z}}{\operatorname{argmin}} \left\| y - C_{\eta} \hat{z} \right\|_{L^2}^2 + \delta^2 \| \hat{z} \|_{L^2}^2$$

Introduction Modeling the CLD Evolution model

Modeling the CLD

Probabilistic model:

$$k_{\eta}(\ell, r) = 1 - \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \sqrt{1 - \left(\frac{\ell}{2r}\right)^2 \alpha_{\eta}(\varphi, \theta)} \frac{\sin \theta}{4\pi} \mathrm{d}\theta \mathrm{d}\varphi$$

Proposition (Brivadis, Sacchelli, 2021).

For any shape parameter η , the operator C_{η} is injective.

 \triangle Since *C* is compact, it has no continuous left-inverse. But one can use a regularization method, such as **Tikhonov regularization**:

$$z = \underset{\hat{z}}{\operatorname{argmin}} \left\| y - C_{\eta} \hat{z} \right\|_{L^2}^2 + \delta^2 \| \hat{z} \|_{L^2}^2$$

Introduction Modeling the CLD Evolution model

Modeling the CLD

Issue: Due to polymorphism, it frequently occurs that particles in the reactor have different shapes.

Obstacle: There isn't enough information in the CLD to recover PSDs if there are multiple shapes in suspension.

Introduction Modeling the CLD Evolution model

Evolution model

Figure 1: Crystallization process at $t = 50 \text{ min}^1$

¹Experiment LG34, Y. Tahri PhD thesis, 2016 Lucas BRIVADIS

Introduction Modeling the CLD Evolution model

Evolution model

Figure 1: Crystallization process at $t = 70 \text{ min}^1$

¹Experiment LG34, Y. Tahri PhD thesis, 2016 Lucas BRIVADIS

Introduction Modeling the CLD Evolution model

Evolution model

Figure 1: Crystallization process at $t = 80 \text{ min}^1$

¹Experiment LG34, Y. Tahri PhD thesis, 2016

Introduction Modeling the CLD Evolution model

Evolution model

Figure 1: Crystallization process at $t = 110 \text{ min}^1$

¹Experiment LG34, Y. Tahri PhD thesis, 2016

Introduction Modeling the CLD Evolution model

Evolution model

Figure 1: Crystallization process at $t = 130 \text{ min}^1$

¹Experiment LG34, Y. Tahri PhD thesis, 2016

Introduction Modeling the CLD Evolution model

Evolution model

Figure 1: Crystallization process at $t = 345 \text{ min}^1$

¹Experiment LG34, Y. Tahri PhD thesis, 2016

Introduction Modeling the CLD Evolution model

Evolution model

Population balance equation:

$$\begin{cases} \partial_t z_i(t,r) = -G_i(t,r)\partial_r z_i(t,r) \\ z_i(0,r) = z_{i,0}(r), \quad \forall r \in [r_{\min}^i, r_{\max}] \\ z_i(t,r_{\min}^i) = u_i(t), \quad \forall t \in [0, t_{\max}] \end{cases}$$

 z_i(t): PSD of particles of shape 1 ≤ i ≤ N for t ∈ [0, t_{max}]

Introduction Modeling the CLD Evolution model

Evolution model

Population balance equation:

$$\begin{cases} \partial_t z_i(t,r) = -G_i(t,r)\partial_r z_i(t,r) \\ z_i(0,r) = z_{i,0}(r), \quad \forall r \in [r_{\min}^i, r_{\max}] \\ z_i(0,r) = u_i(\nu(r)), \quad \forall r \in [r_{\inf}^i, r_{\min}^i) \end{cases}$$

 z_i(t): PSD of particles of shape 1 ≤ i ≤ N for t ∈ [0, t_{max}]

Luenberger observer and BFN

Observer design Back and Forth Nudging Application to the crystallization process

Observer design

Infinite-dimensional linear time-varying system:

$$\begin{cases} \dot{z} = A(t)z, \quad z_0 \in X \\ y = Cz \end{cases}$$

Luenberger observer:

$$\begin{cases} \dot{\hat{z}} = A(t)\hat{z} - \alpha C^* C\varepsilon, & \hat{z}_0 \in X\\ \dot{\varepsilon} = (A(t) - \alpha C^* C)\varepsilon, & \varepsilon_0 = \hat{z}_0 - z_0 \end{cases}$$

- X and Y are Hilbert spaces, $C \in \mathscr{L}(X, Y)$
- $A(t) : \mathcal{D}(A) \to X$ generates an evolution system $(\mathbb{T}(t,s))_{t \geqslant s \geqslant 0}$
- $z, \hat{z}, \varepsilon \in C^0(\mathbb{R}_+; X)$

Example: $X = L^2(r_{inf}, r_{max})^N$, $Y = L^2(\ell_{min}, \ell_{max})$, $A(t) = \text{diag}(-G_i(t, r)\partial_r)$, and $C = \langle k(\ell, \cdot), \cdot \rangle_{L^2(r_{min}, r_{max})}$

Observer design Back and Forth Nudging Application to the crystallization process

Observer design

Definition (Exact observability).

The system is **exactly** observable on $[t_0, t_0 + \tau]$ if for some k > 0,

$$\int_{t_0}^{t_0+\tau} \|C\mathbb{T}(t,t_0)z_0\|_Y^2 \mathrm{d}t \geqslant k \|z_0\|_X^2, \quad \forall z_0 \in X$$

Proposition. (Brivadis, Andrieu, Serres, Gauthier, 2021) Since k is bounded, the crystallization process is **not** exactly observable.

Definition (Approximate observability).

$$\mathbb{O} = \left\{ z_0 \in X \mid \int_{t_0}^{t_0 + \tau} \|C\mathbb{T}(t, t_0) z_0\|_Y^2 \mathrm{d}t = 0 \right\}^{\perp}$$

The system is **approximately** observable on $[t_0, t_0 + \tau]$ if O = X.

Observer design Back and Forth Nudging Application to the crystallization process

Observer design

Definition (Exact observability).

The system is **exactly** observable on $[t_0, t_0 + \tau]$ if for some k > 0,

$$\int_{t_0}^{t_0+\tau} \|C\mathbb{T}(t,t_0)z_0\|_Y^2 \mathrm{d}t \geqslant k \|z_0\|_X^2, \quad \forall z_0 \in X$$

Proposition. (Brivadis, Andrieu, Serres, Gauthier, 2021) Since k is bounded, the crystallization process is **not** exactly observable.

Definition (Approximate observability).

$$\mathbb{O} = \left\{ z_0 \in X \mid \int_{t_0}^{t_0 + \tau} \|C\mathbb{T}(t, t_0) z_0\|_Y^2 \mathrm{d}t = 0 \right\}^{\perp}$$

The system is **approximately** observable on $[t_0, t_0 + \tau]$ if $\mathcal{O} = X$.

Observer design Back and Forth Nudging Application to the crystallization process

Back and Forth Nudging

Inverse problem: How to **estimate** z(t) from the knowledge of y(t) over a **bounded** time interval $[0, \tau]$?

Observer approach: Forward and backward Luenberger observers

Assume that A(t) is the generator of a **bidirectional** evolution system.

$$\forall n \in \mathbb{N}, \forall t \in [0, \tau], \qquad \begin{cases} \dot{z}^n = A(t)\hat{z}^n - \alpha C^*(C\hat{z}^n - y(t)) \\ \hat{z}^n(0) = \begin{cases} \hat{z}^{n-1}(0) & \text{if } n \ge 1, \\ \hat{z}_0 & \text{otherwise.} \end{cases} \\ \text{If } n \text{ is odd}, \qquad \begin{cases} \dot{z}^n = A(t)\hat{z}^n + \alpha C^*(C\hat{z}^n - y(t)) \\ \hat{z}^n(\tau) = \hat{z}^{n-1}(\tau) \end{cases} \end{cases}$$

Observer design Back and Forth Nudging Application to the crystallization process

Back and Forth Nudging

Inverse problem: How to **estimate** z(t) from the knowledge of y(t) over a **bounded** time interval $[0, \tau]$?

Observer approach: Forward and backward Luenberger observers Assume that A(t) is the generator of a **bidirectional** evolution system.

```
\forall n \in \mathbb{N}, \forall t \in [0, \tau], \qquad \begin{cases} \dot{z}^n = A(t)\hat{z}^n - \alpha C^*(C\hat{z}^n - y(t)) \\ \hat{z}^n(0) = \begin{cases} \hat{z}^{n-1}(0) & \text{if } n \ge 1, \\ \hat{z}_0 & \text{otherwise.} \end{cases} \\ \text{If } n \text{ is odd}, \qquad \begin{cases} \dot{z}^n = A(t)\hat{z}^n + \alpha C^*(C\hat{z}^n - y(t)) \\ \hat{z}^n(\tau) = \hat{z}^{n-1}(\tau) \end{cases} \end{cases}
```

Observer design Back and Forth Nudging Application to the crystallization process

Back and Forth Nudging

Inverse problem: How to **estimate** z(t) from the knowledge of y(t) over a **bounded** time interval $[0, \tau]$?

Observer approach: Forward and backward Luenberger observers Assume that A(t) is the generator of a **bidirectional** evolution system.

$$\forall n \in \mathbb{N}, \forall t \in [0, \tau], \qquad \begin{cases} \dot{z}^n = A(t)\hat{z}^n - \alpha C^*(C\hat{z}^n - y(t)) \\ \hat{z}^n(0) = \begin{cases} \hat{z}^{n-1}(0) & \text{if } n \ge 1, \\ \hat{z}_0 & \text{otherwise.} \end{cases} \\ \text{If } n \text{ is odd}, \qquad \begin{cases} \dot{z}^n = A(t)\hat{z}^n + \alpha C^*(C\hat{z}^n - y(t)) \\ \hat{z}^n(\tau) = \hat{z}^{n-1}(\tau) \end{cases} \end{cases}$$

Observer design Back and Forth Nudging Application to the crystallization process

Back and Forth Nudging

If $\langle A(t)z, z \rangle_X \leq p \|Cz\|_Y^2$ for some p > 0 (weak detectability), then $\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\varepsilon(t)\|_X^2 \leq -(\alpha - p) \|C\varepsilon(t)\|_Y^2$

Theorem (Brivadis, Andrieu, Serres and Gauthier, 2021). Assumption:

Both $((A(t))_{t \ge 0}, C)$ and $((-A(t))_{t \ge 0}, C)$ are weakly detectable

Let \mathbb{O} be the observable subspace of (\mathbb{T}, C) over $[0, \tau]$. Then

$$\langle \varepsilon^n(t), \psi \rangle_X \xrightarrow[n \to +\infty]{} 0, \qquad \forall \varepsilon_0 \in X, \ \forall \psi \in \mathbb{O}, \ \forall t \in [0, \tau].$$

Observer design Back and Forth Nudging Application to the crystallization process

Back and Forth Nudging

If
$$\langle A(t)z, z \rangle_X \leq p \|Cz\|_Y^2$$
 for some $p > 0$ (weak detectability), then

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\varepsilon(t)\|_X^2 \leq -(\alpha - p) \|C\varepsilon(t)\|_Y^2$$

Theorem (Brivadis, Andrieu, Serres and Gauthier, 2021). Assumption:

• Both $((A(t))_{t \ge 0}, C)$ and $((-A(t))_{t \ge 0}, C)$ are weakly detectable

Let \mathbb{O} be the observable subspace of (\mathbb{T}, C) over $[0, \tau]$. Then

$$\langle \varepsilon^n(t), \psi \rangle_X \xrightarrow[n \to +\infty]{} 0, \qquad \forall \varepsilon_0 \in X, \ \forall \psi \in \mathbb{O}, \ \forall t \in [0, \tau].$$

Observer design Back and Forth Nudging Application to the crystallization process

Application to the crystallization process

Theorem (Brivadis, Sacchelli, 2021). Assumptions:

- Only two clusters of crystals: $i \in \{1,2\}$, N = 2
- $G_i(t, r) = g_i f(t) h(r)$, $g_i \neq 0$, f in C^2 has a finite number of zeros and $h(r) = 1/r^m$, $m \ge 0$.

Then $H^2(r_{inf}, r_{max})$ lies in the observable subspace of the system over any positive time interval if:

•
$$g_i > 0$$
, $h(r) = 1$, $r_{\min}^1 = r_{\min}^2$, $\eta_1 = 1$ and $\eta_2 > 1$

or

•
$$(r_{\min}^1)^2 A(\eta_2) \neq (r_{\min}^2)^2 A(\eta_1)$$
 with
$$\begin{cases} A(\eta) = 1 & \text{if } \eta \ge 1 \\ A(\eta) = 1/\eta^2 & \text{if } \eta < 1 \end{cases}$$

and $(g_i > 0$ and m is even) or $(g_i < 0$ and m is odd)

Thus, the back and forth observer converges in the weak topology for initial conditions in $H^2(r_{inf}, r_{max})$.

Observer design Back and Forth Nudging Application to the crystallization process

Application to the crystallization process

Theorem (Brivadis, Sacchelli, 2021). Assumptions:

- Only two clusters of crystals: $i \in \{1, 2\}$, N = 2
- $G_i(t, r) = g_i f(t) h(r)$, $g_i \neq 0$, f in C^2 has a finite number of zeros and $h(r) = 1/r^m$, $m \ge 0$.

Then $H^2(r_{inf}, r_{max})$ lies in the observable subspace of the system over any positive time interval if:

•
$$g_i > 0$$
, $h(r) = 1$, $r_{\min}^1 = r_{\min}^2$, $\eta_1 = 1$ and $\eta_2 > 1$

or

$$(r_{\min}^{1})^{2}A(\eta_{2}) \neq (r_{\min}^{2})^{2}A(\eta_{1}) \text{ with } \begin{cases} A(\eta) = 1 & \text{ if } \eta \ge 1 \\ A(\eta) = 1/\eta^{2} & \text{ if } \eta < 1 \end{cases}$$

and $(g_i > 0$ and m is even) or $(g_i < 0$ and m is odd)

Thus, the back and forth observer converges in the weak topology for initial conditions in $H^2(r_{inf}, r_{max})$.

Application to the crystallization process

Theorem (Brivadis, Sacchelli, 2021). Assumptions:

- Only two clusters of crystals: $i \in \{1,2\}$, N = 2
- $G_i(t, r) = g_i f(t) h(r)$, $g_i \neq 0$, f in C^2 has a finite number of zeros and $h(r) = 1/r^m$, $m \ge 0$.

Then $H^2(r_{inf}, r_{max})$ lies in the observable subspace of the system over any positive time interval if:

•
$$g_i > 0$$
, $h(r) = 1$, $r_{\min}^1 = r_{\min}^2$, $\eta_1 = 1$ and $\eta_2 > 1$

or

•
$$(r_{\min}^1)^2 A(\eta_2) \neq (r_{\min}^2)^2 A(\eta_1)$$
 with
$$\begin{cases} A(\eta) = 1 & \text{if } \eta \ge 1 \\ A(\eta) = 1/\eta^2 & \text{if } \eta < 1 \end{cases}$$

and $(g_i > 0 \text{ and } m \text{ is even})$ or $(g_i < 0 \text{ and } m \text{ is odd})$

Thus, the back and forth observer converges in the weak topology for initial conditions in $H^2(r_{inf}, r_{max})$.

Application to the crystallization process

Theorem (Brivadis, Sacchelli, 2021). Assumptions:

- Only two clusters of crystals: $i \in \{1,2\}$, N = 2
- $G_i(t, r) = g_i f(t) h(r)$, $g_i \neq 0$, f in C^2 has a finite number of zeros and $h(r) = 1/r^m$, $m \ge 0$.

Then $H^2(r_{inf}, r_{max})$ lies in the observable subspace of the system over any positive time interval if:

1

•
$$g_i > 0$$
, $h(r) = 1$, $r_{\min}^1 = r_{\min}^2$, $\eta_1 = 1$ and $\eta_2 > 1$

or

•
$$(r_{\min}^1)^2 A(\eta_2) \neq (r_{\min}^2)^2 A(\eta_1)$$
 with
$$\begin{cases} A(\eta) = 1 & \text{if } \eta \ge 1 \\ A(\eta) = 1/\eta^2 & \text{if } \eta < 1 \end{cases}$$

and $(g_i > 0 \text{ and } m \text{ is even})$ or $(g_i < 0 \text{ and } m \text{ is odd})$

Thus, the back and forth observer converges in the weak topology for initial conditions in $H^2(r_{inf}, r_{max})$.

Observer design Back and Forth Nudging Application to the crystallization process

Application to the crystallization process

Observer design Back and Forth Nudging Application to the crystallization process

Application to the crystallization process

200 successive estimates of the PSDs as returned by the BFN algorithm.

Conclusion and perspectives

Conclusion and perspectives

- We propose a **model** of the PSD-CLD mapping for **spheroids**.
- The **Back and Forth Nudging** algorithm can employed to recover the PSD from the CLD in the multi-shape case.
- Weak convergence has been proved for various pairs of shapes.

Conclusion and perspectives

Some open questions about the theoretical results:

- Speed of convergence
- Unbounded operator C
- Online back and forth observer

Some open questions about the application:

- Crystals with other shapes
- Test different probability models
- Observability analysis with spheroids

Conclusion and perspectives

Some open questions about the theoretical results:

- Speed of convergence
- Unbounded operator C
- Online back and forth observer

Some open questions about the application:

- Crystals with other shapes
- Test different probability models
- Observability analysis with spheroids

Thank you for your attention