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Consider for t > 0 the linear time-invariant system

Introduction

X(t) = Ax(t) + Bu(t). (*s)

What is state controllability?

Rn
AT, u)?

Vxo /\/)‘ VX1

XU(X(), t)

— Knowledge of the state at time T,

T
xy(x0, T) = e™xq —l—/ elT=9ABy(t)dt.
0

How to characterize this notion?
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Theorem (Kalman!, Hautus?)

Introduction

The system (xs) is state controllable if and only if :

-
1. 3 T >0 such that E5(u) :/ e(T-DABy()dr, with
0
u € L*>=(]0, T];R™), is surjective.

IR. E. Kalman. “Contributions to the theory of optimal control”. Bol.
Soc. Mat. Mexicana (2) 5 (1960)
2M. L. J. Hautus. “Controllability and observability conditions of linear

autonomous systems”. Nederl. Akad. Wetensch= Proey Ser.=A72 (1969)
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0
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-
3. G ;:/ e™BBe™ dr > 0, for some time T > 0.
0
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Theorem (Kalman!, Hautus?)

Introduction

The system (xs) is state controllable if and only if :

-
1.3 T >0 such that E5(u) = / e(T-DABy()dr, with
0
u € L*=([0, T];R™), is surjective.

2. rk [B\AB|A2B\ _ |A"*1B] =n.
T
3. G5 = / eTABBTeTATdT > 0, for some time T > 0.
0
4. ker(BT)Nker(AT — \l,) = {0},VA e C.

5. rk(A— A,|B) =n,¥A € C.
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Inroduction Theorem (Kalman?)
If system (xs) is state controllable (SC), then for every

(x0,x1, T) € R" x R" x Ry the control
u(t) = BTe(T—t)AT(gsT)—l (X1 _ eTAXO) 7

steers xg to x1 in time T > 0. This control is the unique
minimizer of

N N L
min > |u(t)|5,dt

0
u € L2([0, T];R™),
7
x1 = ePxq +/ elT=D4By(t)dt.
0

IR. E. Kalman. “Contributions to the theory of optimal control”. Bol.
Soc. Mat. Mexicana (2) 5 (1960)
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Motivations

1. What if you don’t want to control the hole state?

7 Q e ?}Q T
?

Motivations

2
K —2

©

91

2. What if you have no information on the state of the system
except probably its initial value?

System

Input
]
Question:

y = h(x, u) Output or
Measurement.

Can we reach any benchmark output y,r starting from any initial
state data in finite time? If YES, what is the suitable control u to
be used?
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FRAMEWORK: Linear Time Invariant (LTI) systems

Sovenre x(t) = Ax(t) + Bu(t), (%0)
y(t) = Cx(t) + Du(t), ©

where, for t > 0, x(t) € R", u(t) € R™ and y(t) € R9.

STRUCTURE
» Problem statement and state of art,
» Main results (contributions),
» [llustration of the results on an example,

» Conclusion.
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Problem statement
and state of art

Definition (State to output controllability)

u continuous

&
}’u(X07 T) =YVyi1

Theorem (Kreindler & Sarachik?)

The system (xo) is state to output controllable if and only if:

(a) rk (CB|CAB|CA%B|---|CA"™"1B|D) = q.

.
(b) Kt = / Ce”BB e CTdt+ DD"> 0, for some T > 0.
0

observability of linear systems”
(1964)

2E. Kreindler and P. Sarachik. “On the concepts of controllability and
. IEEE Transactions on Automatic Control 9.2
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What do we want to do ?

Problem statement
and state of art

We aim to
» extend the Hautus-Popov-Belevich criteria,

» establish a Gramian matrix condition that leads to a
continuous control, when fulfilled.
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Theorem (Danhane, Lohéac and Jungers?)
The system (%) is state to output controllable if and only if:

O 1. There exists a time T > 0 such that the linear map E$ defined
Outlines of the proofs for eVery uc CO([O’ T], Rm) by

;
ES(u) = /0 CelT="ABu(7)dr + Du(T),

is surjective.

.
2. G ::/ Ho(T,t)H,(T,t)"dt > 0, for some T > 0, where
0

.
Ho(T,t) = / CelT=7ABdr + D.
t

3B. Danhane, J. Lohéac, and M. Jungers. “Characterizations of output
controllability for LTI systems”. submitted, hal.03083128 (2020)
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Theorem (Danhane, Lohéac and Jungers?)

3. tk(C|D) = g and Im [gq N (Breopm Br x {0}) = {0},

where Ey = ker(A])™ N (mg;gl ker BT(AI)k),
O e Ay = A — A, with ny the algebraic multiplicity of A in the
minimal polynomial of A.

4. rk(C|D) = g and

Ky, 0 - 0 (C|D)*
rk O Koo =(n+ m)p, where
R ¢ :
0 -+ 0 K, (CD)*

M 0
P = #J(A)’ {)‘17)‘2a"' 7)‘P} = J(A)’ K)\ :|: 0/\ / :| and
My, = (A§A|A’>’\>\_IB|...|A>\B|B).

3B. Danhane, J. Lohéac, and M. Jungers. “Characterizations of output
controllability for LTI systems”. submitted, hal.03083128 (2020)
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Main results and
Outlines of the proofs

Skech of the proof

e STEP 1: Reduction of the system.

Lemma (1)

Consider for t > 0, the system given by

x(t) = Ax(t) + Bu(t), T

u(t) = (1),
= Cx(t) + Du(t).

<
—
~
~—
|

where v(t) € R™ is the input, X(t) € R™™, y(t) € RY, with
A= g‘ ’g , B= (IO) and C = (C|D). System (xo) is SOC if
and only if system (%¢) is SOC.

Proof: It suffices to note that
Ro(x0, T) = {Ce*Txo} + Im (CB|CAB|CA?B| - - - | CA"~1B|D) and
Ro(%0, T) = {CeT%o} + Im (CB|CAB|CA%B| - - - |CA""*B|D).

[
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Skech of the proof
e STEP 2: Prove the theorem with D = 0.

Lemma (2)

Main results and Assume that D = 09,. The following conditions are equivalent:

Outlines of the proofs

1. The system (x0) is state to output controllable,

2.tkC=gqgandImCT N Drcoa) Ex = {0},

My 0 --- o0 C*

3. rkC = q and rk 0 My, : = np.
; . .0 ;
0 - 0 M, Cct

e STEP 3: Apply the result obtained in STEP 2: to system (%o).
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Proof of Lemma 2
xHautus (1)
System (x0) SOC < rk [CB|CAB|CA?B)---|CA"1B] = q,
& rkC=gand ImC" NN = {0}, where

Main results and
Outlines of the proofs

N = {u R | A vekerBT, Vie N}. Finally, write
N = @)con) (N Nker (A])™)° and show that
N Nker (A)™ = Ey.

*Hautus (2)

> Ey = ker M, where My = (A |A™1B]...|A\B|B),

> Observe that Im CT = (ker C)" = ker ((C1)T) for any full
rank matrix C* satisfying CC*+ = 0. 0

5], Gohberg, P. Lancaster, and L. Rodman. Invariant subspaces of matrices
with applications. 2006
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Theorem (Danhane, Lohéac and Jungers®)

Let (x0,y1) € R" x RY, and assume that system (xo) is SOC. For

every T > 0 and ug € R™, the control

t
Main results and U(t) =g +/ HO(T, T)TdT(g?—)71 (y]_ _Yuo(X07 T)) 5
0

Outlines of the proofs
steers xq to y in time T, where yy,(x0, T)=Ce™xo+Ho(T,0)uo.

Furthermore, this control is the unique minimizer of

1/ 5
a(t)|4 dt
2 '/O |u( )| n

min

ue HY([0, T]; R™), u(0) = uo, (Min)

v1 = Yu(xo, T).

3B. Danhane, J. Lohéac, and M. Jungers. “Characterizations of output

controllability for LTI systems”. submitted, hal.03083728 (2020)
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Control with matrix ICr
We also observe that form #

BTe(T-0A" CT(KCr) 15, iftelo,T),
u(t) =
Main results and DT(ICT)il(Sy |f t = T,

Outlines of the proofs

with &y = y; — Ce”Txq steers xg to y7 in time T.
This control is the unique minimizer of

| 1/'T()21+12
min — u\Tt arT —1|Z
2 J, m 2 1lm

u e [3([0, T];R™), z € R™,

y1 — Ce*Txq = CES(u) + Dz.

4E. Kreindler and P. Sarachik. “On the concepts of controllability and
observability of linear systems”. |EEE Transactions on Automatic Control 9.2
(1964)
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Motion of two cars of masses m; and m,

Take for instance

y(t) = (qu(t) = qa(t), va(t) = va(t), wn(t) — (1)) "

Setting x = (q1, v1,q2, )", u= (uy,u2)" and applying the FPD,
the state variable x coupled with the output variable y yield (xo)

with
Illustration on the cars
example

o O O o
o

=
o
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o o o o
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S
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N
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m =m=1and a; = a, =05

e The SOC follows from the fact that the pair (A, B) is state
controllable and rk(C|D) = 3.

e We will to steer xo = (1010)" toy; = (200) " intime T = 1.

* With ug = (1 0)T and Gf we get u = (u1, u2) ", with

Illustration on the cars
example

m(t) = 1—at—bt?—c(e? —1), te[0,1]
un(t) 1—w(t), t €0,1].

* With C; we have u = (u1, up) T, with

gielt0/2 L g Vte [0,1),

t) =
u(t) =1 ifr=1,
_gle(t_l)/2 — 82, vVt € [0'~ 1)*
w(t) = .
0 if t =1,
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Illustration on the cars
example

Control with G,

Controls with Kr

State trajectory
Qi gy

State trajectory
qp g2

0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8

1
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Contributions

As contributions for LTI systems, we have

» extended the Hautus state controllability tests to the case of
state to output controllability,

» given a Gramian criterion which, once fulfilled, leads to a
computation of a continuous control and therefore a
continuous output trajectory for any desire transfer,

Conclusion

» introduced two other notions of output controllability that
can be found in:
B. Danhane, J. Lohéac, and M. Jungers. “Characterizations
of output controllability for LTT systems”. submitted,
hal.03083128 (2020).
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