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Consider for t ≥ 0 the linear time-invariant system

ẋ(t) = Ax(t) + Bu(t). (?S)

What is state controllability?

∀x0 • •∀x1

Rn
∃(T , u)?

xu(x0, t)

=⇒ Knowledge of the state at time T ,

xu(x0,T ) = eTAx0 +
∫ T

0
e(T−t)ABu(t)dt.

How to characterize this notion?
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Theorem (Kalman1, Hautus2)

The system (?S) is state controllable if and only if :

1. ∃ T > 0 such that E s
T (u) =

∫ T

0
e(T−τ)ABu(τ)dτ , with

u ∈ L∞([0,T ];Rm), is surjective.

1R. E. Kalman. “Contributions to the theory of optimal control”. Bol.
Soc. Mat. Mexicana (2) 5 (1960)

2M. L. J. Hautus. “Controllability and observability conditions of linear
autonomous systems”. Nederl. Akad. Wetensch. Proc. Ser. A72 (1969)
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The system (?S) is state controllable if and only if :

1. ∃ T > 0 such that E s
T (u) =

∫ T

0
e(T−τ)ABu(τ)dτ , with

u ∈ L∞([0,T ];Rm), is surjective.

2. rk
[
B|AB|A2B| · · · |An−1B

]
= n.

3. Gs
T :=

∫ T

0
eτABB>eτA>dτ > 0, for some time T > 0.

1R. E. Kalman. “Contributions to the theory of optimal control”. Bol.
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Theorem (Kalman1, Hautus2)

The system (?S) is state controllable if and only if :

1. ∃ T > 0 such that E s
T (u) =

∫ T

0
e(T−τ)ABu(τ)dτ , with

u ∈ L∞([0,T ];Rm), is surjective.

2. rk
[
B|AB|A2B| · · · |An−1B

]
= n.

3. Gs
T :=

∫ T

0
eτABB>eτA>dτ > 0, for some time T > 0.

4. ker(B>) ∩ ker(A> − λIn) = {0},∀λ ∈ C.

5. rk (A− λIn|B) = n,∀λ ∈ C.

1R. E. Kalman. “Contributions to the theory of optimal control”. Bol.
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Theorem (Kalman1)
If system (?S) is state controllable (SC), then for every

(x0, x1,T ) ∈ Rn × Rn × R+ the control

u(t) = B>e(T−t)A>(Gs
T )−1

(
x1 − eTAx0

)
,

steers x0 to x1 in time T > 0. This control is the unique
minimizer of

min 1
2

∫ T

0
|u(t)|2mdt

u ∈ L2([0,T ];Rm),

x1 = eTAx0 +
∫ T

0
e(T−t)ABu(t)dt.

1R. E. Kalman. “Contributions to the theory of optimal control”. Bol.
Soc. Mat. Mexicana (2) 5 (1960)
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Motivations
1. What if you don’t want to control the hole state?

• • •••
−→u 2

−→
f 2

•
−→u 1

−→
f 1

q2
q1

yd

2. What if you have no information on the state of the system
except probably its initial value?

Input u
System

y = h(x , u) Output or
Measurement.

Question:

Can we reach any benchmark output yref starting from any initial
state data in finite time? If YES, what is the suitable control u to

be used?
4 / 16



Introduction

Motivations

Framework and
Structure

Problem statement
and state of art

Main results and
Outlines of the proofs

Illustration on the cars
example

Conclusion

FRAMEWORK: Linear Time Invariant (LTI) systems

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (?O)

where, for t ≥ 0, x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq.

STRUCTURE

I Problem statement and state of art,

I Main results (contributions),

I Illustration of the results on an example,

I Conclusion.
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Definition (State to output controllability)

∀x0 • •∀y1Rn

Rq

∃(T , u)?

yu(x0, t)

u continuous
&

yu(x0,T ) = y1

Theorem (Kreindler & Sarachik2)

The system (?O) is state to output controllable if and only if:

(a) rk
(
CB|CAB|CA2B| · · · |CAn−1B|D

)
= q.

(b) KT =
∫ T

0
CetABB>etA>C>dt + DD>> 0, for some T > 0.

2E. Kreindler and P. Sarachik. “On the concepts of controllability and
observability of linear systems”. IEEE Transactions on Automatic Control 9.2
(1964)
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What do we want to do ?

We aim to

I extend the Hautus-Popov-Belevich criteria,

I establish a Gramian matrix condition that leads to a
continuous control, when fulfilled.
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Theorem (Danhane, Lohéac and Jungers3)

The system (?O) is state to output controllable if and only if:

1. There exists a time T > 0 such that the linear map E o
T defined

for every u ∈ C0([0,T ];Rm) by

E o
T (u) =

∫ T

0
Ce(T−τ)ABu(τ)dτ + Du(T ),

is surjective.

2. Go
T :=

∫ T

0
Ho(T , t)Ho(T , t)>dt > 0, for some T > 0, where

Ho(T , t) =
∫ T

t
Ce(T−τ)ABdτ + D.

3B. Danhane, J. Lohéac, and M. Jungers. “Characterizations of output
controllability for LTI systems”. submitted, hal.03083128 (2020)
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Theorem (Danhane, Lohéac and Jungers3)

3. rk (C |D) = q and Im
[
C>
D>
]
∩
(⊕

λ∈σ(A) Eλ ×
{
0
})

=
{
0
}
,

where Eλ = ker(A>λ )nλ ∩
(⋂nλ−1

k=0 ker B>(A>λ )k
)
,

Aλ = A− λIn, with nλ the algebraic multiplicity of λ in the
minimal polynomial of A.

4. rk (C |D) = q and

rk


Kλ1 0 · · · 0 (C |D)⊥

0 Kλ2

. . .
...

...
...

. . . . . . 0
...

0 · · · 0 Kλp (C |D)⊥

=(n + m)p, where

p = #σ(A), {λ1, λ2, · · · , λp} = σ(A), Kλ =
[
Mλ 0
0 Im

]
and

Mλ =
(
Anλ

λ |A
nλ−1
λ B| · · · |AλB|B

)
.

3B. Danhane, J. Lohéac, and M. Jungers. “Characterizations of output
controllability for LTI systems”. submitted, hal.03083128 (2020)
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Skech of the proof

• STEP 1: Reduction of the system.

Lemma (1)
Consider for t ≥ 0, the system given by

ẋ(t) = Ax(t) + Bu(t),
u̇(t) = v(t),
y(t) = Cx(t) + Du(t).

x̃>=(x>,u>)>⇐⇒
˙̃x(t) = Ãx̃(t) + B̃v(t),
y(t) = C̃ x̃(t),

(?̃O)
where v(t) ∈ Rm is the input, x̃(t) ∈ Rn+m, y(t) ∈ Rq, with

Ã =
(

A B
0 0

)
, B̃ =

(
0
Im

)
and C̃ = (C |D). System (?O) is SOC if

and only if system (?̃O) is SOC.

Proof: It suffices to note that
Ro(x0,T ) = {CeAT x0}+ Im

(
CB|CAB|CA2B| · · · |CAn−1B|D

)
and

R̃o(x̃0,T ) = {C̃eTÃx̃0}+ Im
(
CB|CAB|CA2B| · · · |CAn−1B|D

)
.
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Skech of the proof

• STEP 2: Prove the theorem with D = 0.

Lemma (2)
Assume that D = 0q

m. The following conditions are equivalent:

1. The system (?O) is state to output controllable,

2. rk C = q and Im C> ∩
⊕

λ∈σ(A) Eλ = {0},

3. rk C = q and rk


Mλ1 0 · · · 0 C⊥

0 Mλ2

. . .
...

...
...

. . . . . . 0
...

0 · · · 0 Mλp C⊥

 = np.

• STEP 3: Apply the result obtained in STEP 2: to system (?̃O).
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Proof of Lemma 2
?Hautus (1)

System (?O) SOC ⇔ rk
[
CB|CAB|CA2B| · · · |CAn−1B

]
= q,

⇔ rk C = q and Im C> ∩N = {0}, where

N =
{
ν ∈ Rn | Ai>ν ∈ ker B>, ∀i ∈ N

}
. Finally, write

N =
⊕

λ∈σ(A)
(
N ∩ ker

(
A>λ
)nλ
) 5 and show that

N ∩ ker
(
A>λ
)nλ = Eλ.

?Hautus (2)

I Eλ = ker M>λ , where Mλ =
(
Anλ

λ |A
nλ−1
λ B| · · · |AλB|B

)
,

I Observe that Im C> = (ker C)⊥ = ker
(
(C⊥)>

)
for any full

rank matrix C⊥ satisfying CC⊥ = 0.

5I. Gohberg, P. Lancaster, and L. Rodman. Invariant subspaces of matrices
with applications. 2006
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Theorem (Danhane, Lohéac and Jungers3)

Let (x0, y1) ∈ Rn × Rq, and assume that system (?O) is SOC. For

every T > 0 and u0 ∈ Rm, the control

u(t) =u0+
∫ t

0
Ho(T , τ)>dτ(Go

T )−1 (y1−yu0(x0,T )) ,

steers x0 to y1 in time T , where yu0(x0,T )=CeTAx0+Ho(T , 0)u0.

Furthermore, this control is the unique minimizer of

min 1
2

∫ T

0
|u̇(t)|2mdt

u ∈ H1([0,T ];Rm), u(0) = u0,

y1 = yu(x0,T ).

(Min)

3B. Danhane, J. Lohéac, and M. Jungers. “Characterizations of output
controllability for LTI systems”. submitted, hal.03083128 (2020)
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Control with matrix KT

We also observe that form 4

u(t) =


B>e(T−t)A>C>(KT )−1δy if t ∈ [0,T ),

D>(KT )−1δy if t = T ,

with δy = y1 − CeAT x0 steers x0 to y1 in time T .
This control is the unique minimizer of

min 1
2

∫ T

0
|u(τ)|2mdτ + 1

2 |z |
2
m

u ∈ L2([0,T ];Rm), z ∈ Rm,

y1 − CeAT x0 = CE s
T (u) + Dz .

4E. Kreindler and P. Sarachik. “On the concepts of controllability and
observability of linear systems”. IEEE Transactions on Automatic Control 9.2
(1964)
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Motion of two cars of masses m1 and m2
Take for instance

y(t) = (q1(t)− q2(t), v1(t)− v2(t), v̇1(t)− v̇2(t))>.

Setting x = (q1, v1, q2, v2)>, u = (u1, u2)> and applying the FPD,
the state variable x coupled with the output variable y yield (?O)
with

A =


0 1 0 0
0 − α1

m1
0 0

0 0 0 1
0 0 0 − α2

m2

 , B =


0 0
1

m1
0

0 0
0 1

m2

 ,

C =

1 0 −1 0
0 1 0 −1
0 − α1

m1
0 α2

m2

 , D =

 0 0
0 0
1

m1
− 1

m2

 .
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m1 = m2 = 1 and α1 = α2 = 0.5
• The SOC follows from the fact that the pair (A, B) is state
controllable and rk(C |D) = 3.

• We will to steer x0 = (1 0 1 0)> to y1 = (2 0 0)> in time T = 1.

? With u0 = (1 0)> and Go
1 we get u = (u1, u2)>, with

u1(t) = 1− at − bt2 − c(e t
2 − 1), t ∈ [0, 1]

u2(t) = 1− u1(t), t ∈ [0, 1].

? With K1 we have u = (u1, u2)>, with

u1(t) =
{

g1e(t−1)/2 + g2, ∀t ∈ [0, 1),
0 if t = 1,

u2(t) =
{
−g1e(t−1)/2 − g2, ∀t ∈ [0, 1),
0 if t = 1,
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Contributions

As contributions for LTI systems, we have

I extended the Hautus state controllability tests to the case of
state to output controllability,

I given a Gramian criterion which, once fulfilled, leads to a
computation of a continuous control and therefore a
continuous output trajectory for any desire transfer,

I introduced two other notions of output controllability that
can be found in:
B. Danhane, J. Lohéac, and M. Jungers. “Characterizations
of output controllability for LTI systems”. submitted,
hal.03083128 (2020).
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