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Motivation: fault-tolerant quantum computing
Contrary to classical bits that are either 0 or 1, quantum bits (qubits) are unit vectors of the two-dimensional space C2 = Span (|0〉, |1〉). As a classical
bit can be encoded into the state of any system featuring two stable equilibria, a qubit can be encoded into the state of a quantum system admitting a
two-dimensional stable subspace. The numerical simulation of such quantum systems in the presence of realistic noise is a first step towards the design
of fault-tolerant quantum computers.

The harmonic oscillator
A key example is the quantum harmonic oscilla-
tor, defined by the state space H = L2(R,C)
and the hamiltonian Hho = a†a + 1

2 I where
a = 1√

2 (x + ∂x) is called the annihilation op-
erator.
The eigenvectors of Hho, indexed by n ∈ N, are
called the Fock states and form an Hilbert basis
of L2(R,C), with the relations a|n〉 =

√
n|n−1〉,

a†|n〉 =
√
n+ 1|n+ 1〉 and a†a|n〉 = n|n〉.

The classical strategy for the simulation of a
Lindblad type equation is a Galerkin projection
onto the space spanned by a finite truncation of
this Fock basis.

Quantum process tomography
To characterize a linear transformation E of den-
sity operators on C2, we decompose it on a fixed
basis of linear transformation:

E(ρ) =
∑
ij

χijEiρE
†
j (1)

where the elementary transformations are taken
from the Pauli set: Ei ∈ {I, σX , σY , σZ}. The
coefficients χij above can be computed from the
evolution of four initial density operators:

Closed and open quantum systems – from Schrödinger to Lindblad
A quantum system is called closed if it does not interact with an outer environment, and open
otherwise. Quantum postulates state that to any closed quantum system is associated an Hilbert
space H such that the state of the system is described by a unit vector |ψ〉 ∈ H and its evolution is
given by the Schrödinger equation (or equivalently the Liouville equation)

d

dt
|ψ〉 = −iH|ψ〉 ⇔ d

dt
ρ = −i[H, ρ] (2)

where H is a self-adjoint operator on H called the hamiltonian of the system, ρ = |ψ〉〈ψ| is the
orthogonal projection onto Span(|ψ〉) and [H, ρ] = Hρ− ρH.
The formalism can be generalized to include the case of an open quantum system: from the
Schrödinger equation describing the union of an open quantum system and its environment, one
can, under suitable assumptions, derive a Lindblad-type equation

d

dt
ρ = −i[H, ρ] +

∑
k

D[Lk](ρ) (3)

where ρ is a density operator, that is a positive hermitian operator with unit trace, and
D[L](ρ) = LρL† − 1

2ρL
†L− 1

2L
†Lρ for any operator L.

Numerical approaches must preserve the geometric properties of density operators and address the
fact that the Hilbert space associated to a composite quantum system is the tensor product of the
Hilbert spaces associated to each individual subsystem – the dimension of the problem thus grows
exponentially in the number of subsystems considered.

Model order reduction vs. Intuition-based strategy
Guideline : simulating a composite systems consisting of tensor products requires efficient model
order reduction strategies on each subsystem to deal with the exponential growth of the dimension.
Testbed : computation of some key coefficients in the tomography of a process describing a single
idling cat-qubit, proposed in [New J. Phys. 16 045014 (2014)]. This requires solving the following
initial value problem on H = L2(R,C) for a variety of initial data and parameters:

d

dt
ρ = κ2D[a2 − α2](ρ) +κ1D[a](ρ) + κφD[a†a](ρ) (4)

where a is the annihilation operator on H, α ∈ C is a control parameter and κ2, κ1 and κφ are
positive physical constants. We compare reference simulations using the Fock basis (requiring a
basis of size N � |α|2) to the following two strategies:

Intuition-based
Observations:

1. When κ1 = κφ = 0, any ρ supported on
Span(|α〉, | − α〉) is a fixed point of (4).

2. All operators in (4) are polynomials in a
and a†

Strategy: replace the Fock basis by a shifted
Fock basis

(
a†
n| ± α〉

)
n≤N0

with N0 � N .

Model order reduction
Strategy:

1. Compute a few reference trajectories
(ρk(t))0≤k≤K corresponding to various
choices of κ1, κφ.

2. ρk(t) '
∑
r≤R λr|ψkr (t)〉〈ψkr (t)|

3. Run a PCA on the family (|ψkr (t)〉)r,k,t and
extract the first N0 � N components.

60 simulations with varying
parameters
|α|2 ∈ {2, 4, 6, 8}

κ1 ∈ {10−6, 10−5, 10−4, 10−3, 10−2}
κφ/κ1 ∈ {1, 2.5, 10}
κ2 = 1, T = 4/κ2

Conclusions
• A systematic model order reduction strategy adapted to Lindblad type equations
• Equally efficient as ad hoc state-of-the-art strategies, and outperforming brute-force ap-

proaches, on a single-qubit problem
• Intuition-free → potentially applicable to more complex settings (multi-qubit dynamics, more

realistic models of a cat-qubit, other implementations of a qubit, etc.)
• Other strategies can be considered . . .

Numerical cost
We compare our method and other techniques
of simulation of a Lindblad type equation, from
the point of view of the space needed to store the
solution they provide. Here, N is the truncation
needed to accurately represent the solution in
the Fock basis, whereas r is of the order of the
rank of the solution and typically r � N .

Technique Space cost
Fock basis O(N2)

MOR [this poster] O(r2)
Intuition-based strategy1 O(r2)
Low-rank approximation2 O(N × r)
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