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Motivation: fault-tolerant quantum computing

Contrary to classical bits that are either 0 or 1, quantum bits (qubits) are unit vectors of the two-dimensional space C? = Span (|0}, |1)). As a classical
bit can be encoded into the state of any system featuring two stable equilibria, a qubit can be encoded into the state of a quantum system admitting a
two-dimensional stable subspace. The numerical simulation of such quantum systems in the presence of realistic noise is a first step towards the design
of fault-tolerant quantum computers.

The harmonic oscillator

Closed and open quantum systems — from Schrodinger to Lindblad

A quantum system is called closed it it does not interact with an outer environment, and open A key example is the quantum harmonic oscilla-
otherwise. Quantum postulates state that to any closed quantum system is associated an Hilbert tor, defined by the state space H = L*(R,C)
space H such that the state of the system is described by a unit vector |¢) € H and its evolution is and the hamiltonian Hj, = a'a %I where
given by the Schrodinger equation (or equivalently the Liouville equation) a = %(m + 0,) is called the annihilation op-

7 | q | erator.
%h@ = —tH|Y) & —p=—ilH,p| (2) The eigenvectors of Hy,, indexed by n € N, are

dt
. . L , called the Fock states and form an Hilbert basis
where H is a self-adjoint operator on H called the hamiltonian of the system, p = [¢)(1]| is the of L2(R, C), with the relations a|n) = \/nn—1),

orthogonal PIOJeCtIOH onto Spag(|¢>) an.d H,p| =Hp— pH. atln) = i+ I|n + 1) and ataln) = n|n).
The formalism can be generalized to include the case of an open quantum system: from the . . .
. , o , , , The classical strategy for the simulation of a
Schrodinger equation describing the union of an open quantum system and its environment, one . D . ..
, , , , , Lindblad type equation is a Galerkin projection
can, under suitable assumptions, derive a Lindblad-type equation . .
onto the space spanned by a finite truncation of

d

%p = —i[H, p] + ZD[Lk](P) (3) this Fock basis.
where p is a density operator, that is a positivg hermitian operator with unit trace, and Quantum process tom ography
D[L](p) = LpL" — 3pLTL — =L Lp for any operator L.
Numerical approaches must preserve the geometric properties of density operators and address the To characterize a linear transformation & of den-
fact that the Hilbert space associated to a composite quantum system is the tensor product of the sity operators on C#, we decompose it on a fixed
Hilbert spaces associated to each individual subsystem — the dimension of the problem thus grows basis of linear transformation:

exponentially in the number of subsystems considered.

£(p) = xisEinkE] (1

Model order reduction vs. Intuition-based strategy where the elementary transformations are taken

from the Pauli set: F; € {I,ox,0y,07}. The
coeflicients x;; above can be computed from the
evolution of four initial density operators:

Guideline : simulating a composite systems consisting of tensor products requires efficient model
order reduction strategies on each subsystem to deal with the exponential growth of the dimension.

Testbed : computation of some key coeflicients in the tomography of a process describing a single
idling cat-qubit, proposed in [New J. Phys. 16 045014 (2014)|. This requires solving the following
initial value problem on H = L*(R, C) for a variety of initial data and parameters:

© p= raDla —a’)(p) + k1 Dlal(p) + roDlalal(p) (4)

where a is the annihilation operator on H, a € C is a control parameter and ko, k1 and k4 are
positive physical constants. We compare reference simulations using the Fock basis (requiring a
basis of size N > |«a|?) to the following two strategies:

Intuition-based Model order reduction _

Observations: Strategy: Numerical cost
1. When k1 = k¢ = 0, any p supported on 1. Compute a few reference trajectories We compare our method and other techniques
Span(|a),| — «)) is a fixed point of (4). (p"(t))o<k<xk corresponding to various of simulation of a Lindblad type equation, from
2. All operators in (4) are polynomials in a choices of k1, Kg. the ppint of view o.f the space ne.eded to store Fhe
and at 2. pF(t) ~ T A [0 (£)) (a5 (1)) solution they provide. Here, IV is the truncation
. , , rsROTT " needed to accurately represent the solution in
Strategy: replace the Fock basis by a shifted 3. Run a PCA on the family (Wf (£)))r.k,c and the Fock basis, whereas r is of the order of the

. n .
Fock basis (ClT E= Oé>)n§ N, with No < N. extract the first Vo < N components. rank of the solution and typically r < V.

60 simulations with varying Technique Space cost
parameters Fock basis O(N;)
MOR |[thi t O
af? € {2,4,6,8} this poster] (r?)

P Intuition-based strategy? O(r?)

k1 € {107°,107°,107%,107°,107 "} Low-rank approximation® | O(N x r)

liﬁb//{l ~ {1, 2.9, 10} 10°8 Intuition-based
ko =1, T = 4/1{2 MOR (this poster)
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Conclusions
A systematic model order reduction strategy adapted to Lindblad type equations

Equally efficient as ad hoc state-of-the-art strategies, and outperforming brute-force ap- :
proaches, on a single-qubit problem Ecole des Ponts

Intuition-free — potentially applicable to more complex settings (multi-qubit dynamics, more Parislech
realistic models of a cat-qubit, other implementations of a qubit, etc.) > 2 P
Other strategies can be considered ... | h%‘



