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Introduction

Topic: simulation of kinetic plasma based on Vlasov-Poisson system.

Particle-In-Cell (PIC) (1950s): most used numerical method for Vlasov-Poisson
(coupling between particle approach and grid-based method).

Bene�ts: No velocity grid (reduces the dimension from six to three compared to
continuum kinetic methods), simplicity, ease of parallelization, robustness

Drawbacks: Need of space grid, slow-converging statistical error, exponential
dependence on dimension, number of particles exceedingly large in 3D

Sparse grids: combination technique (1992) (initially for pde's solutions):

Bene�ts: Reduces dimension dependence for grid-based methods

Drawbacks: Needs smooth solutions and structured grid

First application of the combination technique to Particle-In-Cell methods by

Ricketson et al.[2] (2017)

Assessment of the method and analyse of the weaknesses in 2D (objective is 3D).
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Vlasov-Poisson system

Vlasov Poisson system

Non-relativistic system of Vlasov-Poisson with �xed magnetic �eld B:
∂fs

∂t
+ v · ∇xfs +

qs

ms
(E + v× B) · ∇vfs = 0,

∇ · E =
ρ

ε0
, E = −∇Φ,

(1)

fs(x, v, t) phase-space distribution attached to the species s.

E electric �eld, Φ electric potential

ρ charge density obtained from the phase-space distribution of each species:

ρ(x, t) =
∑
s

qs

∫
fs(x, v, t)dv (2)
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Particle-In-Cell scheme

Particle-In-Cell scheme

Coupling between a particle approach for Vlasov equation and mesh-based solver
for Poisson equation:

1 fs represented by a collection of N numerical particles with positions and velocities,
denoted (xp, vp), p = 1, ...,N evolving following Newton equations:

dxp

dt
= vp,

dvp

dt
=

qs

ms
(E + v× B)|x=xp . (3)

2 ρ projected onto a grid with a numerical convolution kernel and a sum over the
particles (see details in the following).

3 E obtained by resolving the Poisson equation and di�erenciating Φ on the grid:

∆hΦj = −
ρ

ε0
, Ej = −∇hΦj, (4)

with ∆h, ∇h discrete operators on the grid with discretization h.

4 E evaluated at the particles positions by interpolation.
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Particle-In-Cell scheme

Errors in Particle-In-Cell scheme

Considering a leap frog scheme for the advance in time of the particles, a second
order centered �nite di�erence scheme for the �eld solver and the precedent
framework for the projection of the density on the grid, the error of the scheme ε
scales with:

ε ∼ ∆t2, h2, (Nhd )−1/2.︸ ︷︷ ︸
(mean number of particles per cell of the grid)−1/2

(5)

Conditions of convergence are:

∆T � 1, h� 1, N � h−d .︸ ︷︷ ︸
require an extremely high number of particles

(6)

→ Slow convergence of the statistical error (O(N−1/2))

→ ε depends exponentially on the dimension d of the problem (curse of
dimensionality)
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Combination technique

Presentation of the combination technique

Combination technique [4]: sparse grid method of interpolation based on
representations of a function on anisotropic grids and linear combination:

1 Considering anisotropic grids Ωl (subgrids) parametrized by an index
l = (l1, l2) ∈ N2 very�ng |l|1 = n + 1− σ, for σ = 0, 1
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Figure: Subgrids Ω(l1,l2) for n = 3.

2 Sparse grid f ml interpolant of degree m constructed on each Ωl:

f ml (x) :=
∑
j∈Jl

αl,jφ
m
l,j(x). (7)

Jl : index node set for grid Ωl, φ
m
l,j B-spline of degree m centered at grid nodes of

index j, αl,l coe�cients verifying interpolation conditions.
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Combination technique

Presentation of the combination technique

Combination technique [4]:

3 Sparse grid interpolant constructed by linear combination of the partial interpolants
of equation (7):

f mn (x) :=
∑
|l|1=n+1

f ml (x)−
∑
|l|1=n

f ml (x) (8)

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

(3, 1)

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

(2, 2)

•
•

•
•

•
•

•
•

•

•
•

•
•

•
•

•
•

•

•
•

•
•

•
•

•
•

•

(1, 3)

•

•

•

•

••

•

•

•

•

••

•

•

•

(2, 1)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(1, 2)

+O +O -O -O

Figure: Combination for n=3.

→ Easily extensible in dimension d ∈ N [1].
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Combination technique

Combination technique

Theorem (d dimension)

Let f be a smooth function with a pointwise error expression of the form:

f (x)− f ml (x) =
d∑

m=1

∑
{1,...,m}⊂{1,...,d}

τ1,...,m(x ; hl1 , ..., hlm )h2l1 ...h
2
lm
, (9)

with bounded ‖τ1,...,m(·; hl1 , ..., hlm )‖∞ ≤ κ. The sparse grid interpolant of the

function converges to the exact solution in Lp-norm:

‖f mn − f ‖p = O(log2(h−1n )d−1h2n), 1 ≤ p ≤ ∞, (10)

Proof.

See [1,4].

Remark

Error: O(h2n) (classical) → O(log2(h−1n )d−1h2n) (sparse)

Complexity: O(h−d
n ) (classical) → O(log2(h−1n )d−1h−1n ) (sparse)
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Combination technique

Projection of the density onto the subgrids (Monte-Carlo)

Let X̃ random variable with probability density function

∫
f̃s(·, v)dv, where

f̃s =
qs

Qs
fs , Qs the total charge of particles s.

ρ(x) = QE[δ(X̃− x)]. (11)

δ substituted by a numerical convolution kernel Sd based on the cell width of
the subgrid hl:

Sd,l(x) :=
d∏

t=1

1

hlt
S
(

xt

hlt

)
, S(xt) =

{
1− |xt | , if |xt | ≤ 1,
0, else.

(12)
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Figure: Examples of hierarchical shape function Sd,l(x− xp) in the two dimensional case.
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Combination technique

Projection of the density onto the subgrids (Monte-Carlo)

Since position particles are independant realizations of X̃, we introduce a
statistical estimator for the density:

ρh,N(x) :=
Q
N

N∑
p=1

Sd
(
x− xp

h

)
. (13)
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Combination technique

Projection of the density onto the subgrids

Proposition

Assuming enough smoothness on the probability density f̃ (·, v) ∈ X4, MSRE is:(∫
(ρh,N(x)− ρ(x))2dxp

) 1
2
≤ Bias(ρh,N(x)) + V[ρh,N(x)]

1
2 , (14)

where the bias and the square root variance are given by:

Bias(ρl,j,N) =
d∑

m=1

∑
{1,...,m}⊂{1,...,d}

τ1,...,m(xl,j ; hl1 , ..., hlm )h2l1 ...h
2
lm
, (15)

(V[ρl,j,N ])
1
2 = O

(
(Nhn+1−σ)−

1
2

)
, (16)

Proof.

See [1, 5].

Remark

The bias expression (15) veri�es the assumption of equation (9) in the
combination technique theorem.

Statistical error reduction : (Nhn+1−σ)−
1
2 < (Nhdn )−

1
2 , σ = 0, ..., d − 1
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Subgrid Particle-In-Cell scheme

Subgrid Particle-In-Cell scheme

ρ projected onto each subgrid Ωl, E solved on each subgrid and interpolated at
particle positions with combination technique:

Em
n (xp) :=

∑
|l|1=n+1

Em
l (xp)−

∑
|l|1=n

Em
l (xp), (17)

with Em
l (xp) the sparse grid interpolant of the electric �eld on the subgrid Ωl.

Noise reduction (ρ projected onto grids with larger cells) and acceleration of the

resolution of the electric �eld (complexity falls from O(h−d
n ) to

O(log2(h−1n )d−1h−1n )).



Introduction Standard Particle-In-Cell Merging Particle-In-Cell with sparse grids Numerical results Conclusions

Properties of the scheme

Convergence of the sparse grid interpolant

Theorem (Convergence of the electric �eld interpolant)

Assuming enough smoothness on ρ so that Φ ∈ X5,0(γ), ρ ∈ X5(κ), the sparse grid

interpolant of the electric �eld converges to the exact solution in Lp-norm:

‖Em
n − E‖p = O

(
log2(h−1n )d−1

(
h2n + (Nhn)−

1
2

))
, 1 ≤ p ≤ ∞, (18)

where E = −∇Φ, ∆Φ = −ρ/ε0.

Proof.

See [1].

Remark

The statistical error scales with log2(h−1n )d−1(Nhn)−
1
2 in comparison to

(Nhdn )−
1
2 for the standard PIC method.

Strong dependance on cross derivatives of the solutions in estimation (18)
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Bene�ts, drawbacks and alternatives

Alternatives

Alternatives in order to alleviate the cross derivative dependances:

O�set combination technique [1] inspired from the truncated combination technique
[3, 6] where fewer subgrids are considered in the combination

Correction of the Subgrid scheme with an enhancement of the subgrids at the
resolution of the electric �eld (Enhanced Subgrid PIC scheme [1])

Other alternatives proposed in [1].
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Numerical results

Diocotron instability (2D): Not favorable to sparse grid techniques (non-aligned

with the grid structures arising in the simulation, high cross derivatives terms).

Electrons immersed in a uniform, immobile, background of ions

Fixed magnetic �eld B = (0, 0,Bz )

Deformation of the initially axisymmetric electron density distribution, leading, to
the formation of vortices

Figure: Diocotron instability. Electron charge density at t = 0 (left), t = T1 (right).
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Numerical results

Figure: Standard PIC Pc = 200 (a) Standard PIC, Pc = 40 (b), Subgrid Pc = 40 (d),
Enhanced Subgrid (o�set) Pc = 40 (e). Grid resolution 256× 256 cells (a), (b), (e) /
1024× 1024 cells (d).
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Subgrid scheme (d):

+O ≈ 11 times less total particles in the simulation
+O Acceleration of the resolution of electric �eld
-O Higher spatial discretization required (strong dependance on cross derivatives
of the solution)
-O Fails to reproduce �ne-scale structure.

Enhanced Subgrid scheme (o�set) (e):

+O ≈ 7.25 times less total particles in the simulation
+O Acceleration of the resolution of electric �eld
+O Same spatial discretization
+O Reproduces correctly the �ne-scale structure.
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Conclusions

+O Reduction of the total number of particles + reduction of the complexity of
the Poisson equation

-O Stronger dependence on the high order cross derivatives of the solution
(compensated by the alternatives)

Interest of the method signi�cantly higher in dimension 3.

	1x106

	1x107

	1x108

	1x109

	1x1010

	1x1011

	1x1012

	100

Standard	2D
Standard	3DSparse	2DSparse	3D

Figure: Total number of particles N as function of the grid resolution.

Perspectives:
Assessment of the method and alternative methods on "more physical" test cases in
dimension 2.
implementation and optimisation of performance in term of computational time and
memory storage in dimension 3
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Appendix

Number of particles per cell (2D) de�ned for the regular Particle-In-Cell method
(19) and the sparse grid one (20) :

Pc =
N

h−2n L2
= N2−2n, (19)

Pc =
N

nh−1n+1L + (n − 1)h−1n L
=

N2−n

3n − 1
. (20)

Combination technique in dimension d ∈ N:

f mn (x) :=

d−1∑
σ=0

(−1)σ
(d − 1

σ

) ∑
l∈L(n,σ)

∑
j∈Jl

αl,jφ
m
l,j(x), (21)

with

L(n, σ) := {l ∈ Nd | |l|1 = n + d − 1− σ, l ≥ (1, ..., 1)}, (22)



Appendix: Outline of the scheme

1 Particles represented and evolved like in equation (3).

2 ρ projected onto each subgrid Ωl, |l|1 = n + d − 1− σ, for σ = 0, ..., d − 1 with
the hierarchical estimator de�ned in equation (13).

3 E resolved on each subgrid Ωl from Poisson equation and by di�erenciation:

El,j = −∇hl
Φl,j, ∆hl

Φl,j = −
ρl,j,N

ε0
, (23)

with ∇hl
, ∆hl

discrete second order �nite di�erence operators de�ned on Ωl and
depending on the subgrid discretization hl.

4 E evaluated at particle positions using the combination technique:

Em
n (xp) :=

∑
|l|1=n+1

Em
l (xp)−

∑
|l|1=n

Em
l (xp), (24)

with Em
l (xp) the sparse grid interpolant of the electric �eld on the subgrid Ωl.



Appendix: Total momentum preservation

Theorem (Total momentum)

Assuming periodic boundary conditions, B1-splines for the combination technique, the

scheme does preserve the total momentum of the system, i.e

dP
dt

= 0, (25)

where P = m

∫∫
vfN(x, v, t)dxdv is the total momentum.

Proof.

See [1].



Appendix: Non-linear Landau damping (25 times less particles)

(a) (f) (g)

(h) (i)

Figure: STD (a), HG (classical) (f), SG (classical) (g), ESG (o�set) (h), OHG (o�set) (i)
schemes. Pc = 1000 (a), Pc = 250 (f), (g), (h), (i) .
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