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Introduction

o Topic: simulation of kinetic plasma based on Vlasov-Poisson system.

o Particle-In-Cell (PIC) (1950s): most used numerical method for Vlasov-Poisson
(coupling between particle approach and grid-based method).

o Benefits: No velocity grid (reduces the dimension from six to three compared to
continuum kinetic methods), simplicity, ease of parallelization, robustness

e Drawbacks: Need of space grid, slow-converging statistical error, exponential
dependence on dimension, number of particles exceedingly large in 3D

@ Sparse grids: combination technique (1992) (initially for pde’s solutions):

o Benefits: Reduces dimension dependence for grid-based methods

o Drawbacks: Needs smooth solutions and structured grid

o First application of the combination technique to Particle-In-Cell methods by
Ricketson et al.[2] (2017)

o Assessment of the method and analyse of the weaknesses in 2D (objective is 3D).
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Vlasov Poisson system

Non-relativistic system of Vlasov-Poisson with fixed magnetic field B:

%+v Vxﬂ+—(E+v><B) Vufs =0,
(1)
V-E=L, E-_ve,

€0

o fs(x,v, t) phase-space distribution attached to the species s.
o E electric field, ® electric potential

o p charge density obtained from the phase-space distribution of each species:

p(x,t) = qu / fs(x,v, t)dv (2)
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Particle-In-Cell scheme

Particle-In-Cell scheme

o Coupling between a particle approach for Vlasov equation and mesh-based solver
for Poisson equation:

© f, represented by a collection of N numerical particles with positions and velocities,

denoted (x,,v,), p=1,..., N evolving following Newton equations:
dx, dv, gs
— =, — = —(E4v X B)|x=x,- 3
dt P dt ms( Mx=xp ()
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€0

with Aj, V, discrete operators on the grid with discretization h.
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Particle-In-Cell scheme

o Coupling between a particle approach for Vlasov equation and mesh-based solver
for Poisson equation:

© f, represented by a collection of N numerical particles with positions and velocities,

denoted (x,,v,), p=1,..., N evolving following Newton equations:
dx, dv, gs
— = vy, — = —(E+ v X B)|x—x,- 3
L = (- @)
@ p projected onto a grid with a numerical convolution kernel and a sum over the
particles (see details in the following).
© E obtained by resolving the Poisson equation and differenciating ¢ on the grid:
P
Ap®j = ——, Ej = —V,o;, (4)
o

with Aj, V, discrete operators on the grid with discretization h.

Q@ E evaluated at the particles positions by interpolation.
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Errors in Particle-In-Cell scheme

o Considering a leap frog scheme for the advance in time of the particles, a second
order centered finite difference scheme for the field solver and the precedent
framework for the projection of the density on the grid, the error of the scheme €
scales with:

€~ A2 H?, (NhT)~1/2, (5)
———

(mean number of particles per cell of the grid)*l/2
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Errors in Particle-In-Cell scheme

o Considering a leap frog scheme for the advance in time of the particles, a second
order centered finite difference scheme for the field solver and the precedent

framework for the projection of the density on the grid, the error of the scheme €
scales with:

€~ A2 H?, (NhT)~1/2, (5)
———

(mean number of particles per cell of the grid)*l/2

o Conditions of convergence are:

AT <1, h<1l, N>hd (6)
e Y —

require an extremely high number of particles

— Slow convergence of the statistical error (O(N~1/2))

— ¢ depends exponentially on the dimension d of the problem (curse of
dimensionality)
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Presentation of the combination technique

o Combination technique [4]: sparse grid method of interpolation based on
representations of a function on anisotropic grids and linear combination:
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o Combination technique [4]: sparse grid method of interpolation based on
representations of a function on anisotropic grids and linear combination:

@ Considering anisotropic grids € (subgrids) parametrized by an index
I = (h, k) € N? veryfing [lls =n+1— o0, for o =0,1

(3,1) (2,2) (1,3) (2,1) (1,2)

Figure: Subgrids Q1) for n = 3.



Merging Particle-In-Cell with sparse grids
@00000

Combination technique

Presentation of the combination technique

o Combination technique [4]: sparse grid method of interpolation based on
representations of a function on anisotropic grids and linear combination:

@ Considering anisotropic grids € (subgrids) parametrized by an index
I = (h, k) € N? veryfing [lls =n+1— o0, for o =0,1

(3,1) (2,2) (1,3) (2,1) (1,2)

Figure: Subgrids Q1) for n = 3.

@ Sparse grid ™ interpolant of degree m constructed on each Q:

A7) = > onjd;(0). o

i€q

@ J) : index node set for grid Q, ¢|mj B-spline of degree m centered at grid nodes of

index j, oy coefficients verifying interpolation conditions.
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Presentation of the combination technique

o Combination technique [4]:

© Sparse grid interpolant constructed by linear combination of the partial interpolants
of equation (7):

)= > ) = D A"x) (®

[N1=n+1 [Ma=n

N IR IS Of...106 .
(3,1) (2,2) (1,3) (2,1) (1,2)

Figure: Combination for n=3.

— Easily extensible in dimension d € N [1].
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Combination technique

Theorem (d dimension)

Let f be a smooth function with a pointwise error expression of the form:
d
F) — ") = > > 1, m(X5 by e By )RR D (9)
m=1 {1,....m}C{1,...,d}

with bounded ||T1,....m(+; hiy s .., hi,,)|lco < K. The sparse grid interpolant of the
function converges to the exact solution in LP-norm:

I — fllp = Ologa(hy, 1)~ h3), 1< p< oo, (10)

See [1,4]. O

o Error: O(h2) (classical) — O(log, (hy 1)?—1h2) (sparse)
o Complexity: O(hy ?) (classical) — O(logy(hy *)?~1hyt) (sparse)
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Projection of the density onto the subgrids (Monte-Carlo)

e Let X random variable with probability density function /fs(-,v)dv, where

P=

=2 fs, Qs the total charge of particles s.
S

p(x) = QE[5(X — x)]. (11)
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Combination technique

Projection of the density onto the subgrids (Monte-Carlo)

e Let X random variable with probability density function /fs(-,v)dv, where

f. = gfs Qs the total charge of particles s.
S

p(x) = QE[5(X — x)]. (11)

o ¢ substituted by a numerical convolution kernel S, based on the cell width of
the subgrid hy:

St = [T s(3). sto={ g7 EEISE

et hy, hy, , else.

Figure: Examples of hierarchical shape function S;(x — x,) in the two dimensional case.
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Projection of the density onto the subgrids (Monte-Carlo)

@ Since position particles are independant realizations of X, we introduce a
statistical estimator for the density:

N

pnn(x) == %st (%) - (13)

p=1
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Projection of the density onto the subgrids

Assuming enough smoothness on the probability density (-, v) € Xa, MSRE is:

(ﬂmww—pmwaEgmHmmu»+wmwwﬁ, (14)

where the bias and the square root variance are given by:
d

Bias(pij,n) = Z Z 7'1,.4.,m(xl,j;hl1u~~-,hlm)h/21~-h2mu (15)
m=1 {1,...,m}C{1,...,d}

(VIprinD) % = O ((Nhnia—0) "2 ), (16)

See [1, 5]. O

@ The bias expression (15) verifies the assumption of equation (9) in the
combination technique theorem.

- . _1 dy—1
o Statistical error reduction : (Nhy11-5)"2 < (Nh§)"2, o0=0,..,d—1
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Subgrid Particle-In-Cell scheme

@ p projected onto each subgrid €, E solved on each subgrid and interpolated at
particle positions with combination technique:

E7 (xp) := Z E"(xp) — Z E["(xp), (17)

Mla=n+1 Mz=n

with E{"(xp) the sparse grid interpolant of the electric field on the subgrid €.

@ Noise reduction (p projected onto grids with larger cells) and acceleration of the

resolution of the electric field (complexity falls from O(hy9) to
O(logy (h 1)~ b ™).
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Convergence of the sparse grid interpolant

Theorem (Convergence of the electric field interpolant)

Assuming enough smoothness on p so that ® € Xs5,0(7), p € Xs(k), the sparse grid
interpolant of the electric field converges to the exact solution in LP-norm:

_1
IE7 — Ell, = © (loga(hy )" (B2 +(NA)“2)), 1<p<oo,  (18)

where E= —V®&, Ad = —p/eg.

See [1]. O

o The statistical error scales with Iogz(hﬁl)dfl(Nhn)*% in comparison to
(Nhﬂ)’% for the standard PIC method.

o Strong dependance on cross derivatives of the solutions in estimation (18)
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Alternatives

o Alternatives in order to alleviate the cross derivative dependances:

o Offset combination technique [1] inspired from the truncated combination technique
[3, 6] where fewer subgrids are considered in the combination

e Correction of the Subgrid scheme with an enhancement of the subgrids at the
resolution of the electric field (Enhanced Subgrid PIC scheme [1])

o Other alternatives proposed in [1].
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Numerical results

o Diocotron instability (2D): Not favorable to sparse grid techniques (non-aligned
with the grid structures arising in the simulation, high cross derivatives terms).

o Electrons immersed in a uniform, immobile, background of ions
o Fixed magnetic field B = (0,0, B;)

o Deformation of the initially axisymmetric electron density distribution, leading, to
the formation of vortices

Figure: Diocotron instability. Electron charge density at t = 0 (left), t = Ty (right).
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Numerical results

Figure: Standard PIC P. = 200 (a) Standard PIC, P. = 40 (b), Subgrid P. = 40 (d),
Enhanced Subgrid (offset) P. = 40 (e). Grid resolution 256 x 256 cells (a), (b), (¢) /
1024 x 1024 cells (d).
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@ Subgrid scheme (d):

@ ~ 11 times less total particles in the simulation

@ Acceleration of the resolution of electric field

(© Higher spatial discretization required (strong dependance on cross derivatives
of the solution)

(=) Fails to reproduce fine-scale structure.

o Enhanced Subgrid scheme (offset) (e):

@ ~ 7.25 times less total particles in the simulation
@ Acceleration of the resolution of electric field

@ Same spatial discretization

@ Reproduces correctly the fine-scale structure.
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Conclusions

o (P Reduction of the total number of particles + reduction of the complexity of
the Poisson equation

e (©) Stronger dependence on the high order cross derivatives of the solution
(compensated by the alternatives)

@ Interest of the method significantly higher in dimension 3.

3indard 30 —&—
oo
Lot i

1x1012

1x1012

1x1010
1x109
1x108
1x107

s [T B
AT

100

Figure: Total number of particles N as function of the grid resolution.

@ Perspectives:
e Assessment of the method and alternative methods on "more physical" test cases in
dimension 2.
e implementation and optimisation of performance in term of computational time and
memory storage in dimension 3
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@ Number of particles per cell (2D) defined for the regular Particle-In-Cell method
(19) and the sparse grid one (20) :

- _ —2n
P, = T N2—2n, (19)

N N2~

P. = = .
T nh ML+ (n—1)hL 3n—1

(20)

o Combination technique in dimension d € N:
d—1 d_1
£ (x) == Z(—l)"< ) 3D o), (21)
g N
o=0 leL(n,0)i€ T
with

L(no)={leN | Ily=n+d—1—-0, 1 >(1,..,1)}, (22)



Appendix: Outline of the scheme

Q Particles represented and evolved like in equation (3).

@ p projected onto each subgrid @, i =n+d—-1—0,forc=0,...,d — 1 with
the hierarchical estimator defined in equation (13).

© E resolved on each subgrid ) from Poisson equation and by differenciation:

PN
Eij = —Vij, Apdj=-——2=, (23)

€0
with Vj,, Ay discrete second order finite difference operators defined on € and
depending on the subgrid discretization h.

@ E evaluated at particle positions using the combination technique:

EN() = D> El(xp)— > El(xp), (24)

[1=n+1 [N2=n

with E["(x,) the sparse grid interpolant of the electric field on the subgrid €.



Appendix: Total momentum preservation

Theorem (Total momentum)

Assuming periodic boundary conditions, Bl-splines for the combination technique, the
scheme does preserve the total momentum of the system, i.e

dpP

— =0, 25
= (25)

where P = m// vin(x, v, t)dxdv is the total momentum.

See [1]. O




Appendix: Non-linear Landau damping (25 times less particles)

Figure: STD (a), HG (classical) (f), SG (classical) (g), ESG (offset) (h), OHG (offset) (i)
schemes. P, = 1000 (a), P. = 250 (f), (g), (h), (i) -
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