Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions
	000	00000000	000	00

Sparse grid approach to accelerate Particle-In-Cell (PIC) methods

M. Chung To Sang[‡], F. Deluzet[†], G. Fubiani [‡], L. Garrigues [‡], <u>C. Guillet</u>^{†‡*}, J.Narski[†]

† Institut de Mathématiques de Toulouse (IMT) ‡ Laboratoire Plasma et Conversion d'énergie (LAPLACE)

June 20, 2021

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

*Corresponding author

Introd	uction Standard Partic	cle-In-Cell Merging Particle-In-Cel	ll with sparse grids Numerical resul	ts Conclusions
⊖		000000000	000	00
Out	line			

Introduction

- Standard Particle-In-Cell
 - Vlasov-Poisson system
 - Particle-In-Cell scheme

Merging Particle-In-Cell with sparse grids

- Combination technique
- Subgrid Particle-In-Cell scheme
- Properties of the scheme
- Benefits, drawbacks and alternatives

Numerical results

Introduction •	Standard Particle-In-Cell 000	Merging Particle-In-Cell with sparse grids	Numerical results 000	Conclusions 00	
Introduction					

- Topic: simulation of kinetic plasma based on Vlasov-Poisson system.
- **Particle-In-Cell** (PIC) (1950s): most used numerical method for Vlasov-Poisson (coupling between particle approach and grid-based method).
 - Benefits: No velocity grid (reduces the dimension from six to three compared to continuum kinetic methods), simplicity, ease of parallelization, robustness
 - Drawbacks: Need of space grid, slow-converging statistical error, exponential dependence on dimension, number of particles exceedingly large in 3D
- Sparse grids: combination technique (1992) (initially for pde's solutions):
 - Benefits: Reduces dimension dependence for grid-based methods
 - Drawbacks: Needs smooth solutions and structured grid
- First application of the combination technique to Particle-In-Cell methods by Ricketson *et al.*^[2] (2017)
- Assessment of the method and analyse of the weaknesses in 2D (objective is 3D).

Non-relativistic system of Vlasov-Poisson with fixed magnetic field B:

$$\begin{cases} \frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_s + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_s = 0, \\ \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}, \quad \mathbf{E} = -\nabla \Phi, \end{cases}$$
(1)

- $f_s(\mathbf{x}, \mathbf{v}, t)$ phase-space distribution attached to the species s.
- **E** electric field, Φ electric potential
- ho charge density obtained from the phase-space distribution of each species.

$$\rho(\mathbf{x},t) = \sum_{s} q_{s} \int f_{s}(\mathbf{x},\mathbf{v},t) d\mathbf{v}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions	
	000	00000000	000	00	
Particle-In-Cell scheme					
Particle-In-Cell scheme					

- Coupling between a <u>particle approach</u> for Vlasov equation and <u>mesh-based solver</u> for Poisson equation:
 - f_s represented by a collection of N numerical particles with positions and velocities, denoted $(\mathbf{x}_p, \mathbf{v}_p)$, p = 1, ..., N evolving following Newton equations:

$$\frac{d\mathbf{x}_{p}}{dt} = \mathbf{v}_{p}, \qquad \frac{d\mathbf{v}_{p}}{dt} = \frac{q_{s}}{m_{s}} (\mathbf{E} + \mathbf{v} \times \mathbf{B})|_{\mathbf{x} = \mathbf{x}_{p}}.$$
 (3)

- ρ projected onto a grid with a numerical convolution kernel and a sum over the particles (see details in the following).
- **a** E obtained by resolving the Poisson equation and differenciating Φ on the grid:

$$\Delta_{h} \Phi_{j} = -\frac{\rho}{\varepsilon_{0}}, \quad \mathsf{E}_{j} = -\nabla_{h} \Phi_{j}, \tag{4}$$

with Δ_h , ∇_h discrete operators on the grid with discretization h.

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions	
0	000	00000000	000	00	
Particle-In-Cell scheme					
Particle-In-Cell scheme					

- Coupling between a <u>particle approach</u> for Vlasov equation and <u>mesh-based solver</u> for Poisson equation:
 - f_s represented by a collection of N numerical particles with positions and velocities, denoted $(\mathbf{x}_p, \mathbf{v}_p)$, p = 1, ..., N evolving following Newton equations:

$$\frac{d\mathbf{x}_{p}}{dt} = \mathbf{v}_{p}, \qquad \frac{d\mathbf{v}_{p}}{dt} = \frac{q_{s}}{m_{s}} (\mathbf{E} + \mathbf{v} \times \mathbf{B})|_{\mathbf{x} = \mathbf{x}_{p}}.$$
 (3)

2 ρ projected onto a grid with a numerical convolution kernel and a sum over the particles (see details in the following).

a E obtained by resolving the Poisson equation and differenciating Φ on the grid:

$$\Delta_{h} \Phi_{j} = -\frac{\rho}{\varepsilon_{0}}, \quad \mathsf{E}_{j} = -\nabla_{h} \Phi_{j}, \tag{4}$$

with Δ_h , ∇_h discrete operators on the grid with discretization h.

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions	
	000	00000000	000	00	
Particle-In-Cell scheme					
Particle-In-Cell scheme					

- Coupling between a <u>particle approach</u> for Vlasov equation and <u>mesh-based solver</u> for Poisson equation:
 - f_s represented by a collection of N numerical particles with positions and velocities, denoted $(\mathbf{x}_p, \mathbf{v}_p)$, p = 1, ..., N evolving following Newton equations:

$$\frac{d\mathbf{x}_{p}}{dt} = \mathbf{v}_{p}, \qquad \frac{d\mathbf{v}_{p}}{dt} = \frac{q_{s}}{m_{s}} (\mathbf{E} + \mathbf{v} \times \mathbf{B})|_{\mathbf{x} = \mathbf{x}_{p}}.$$
 (3)

- ρ projected onto a grid with a numerical convolution kernel and a sum over the particles (see details in the following).
- **\bigcirc** E obtained by resolving the Poisson equation and differenciating Φ on the grid:

$$\Delta_{h} \Phi_{\mathbf{j}} = -\frac{\rho}{\varepsilon_{\mathbf{0}}}, \quad \mathbf{E}_{\mathbf{j}} = -\nabla_{h} \Phi_{\mathbf{j}}, \tag{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

with Δ_h , ∇_h discrete operators on the grid with discretization h.

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions	
	000				
Particle-In-Cell scheme					
Particle-In-Cell scheme					

- Coupling between a <u>particle approach</u> for Vlasov equation and <u>mesh-based solver</u> for Poisson equation:
 - f_s represented by a collection of N numerical particles with positions and velocities, denoted $(\mathbf{x}_p, \mathbf{v}_p)$, p = 1, ..., N evolving following Newton equations:

$$\frac{d\mathbf{x}_{p}}{dt} = \mathbf{v}_{p}, \qquad \frac{d\mathbf{v}_{p}}{dt} = \frac{q_{s}}{m_{s}} (\mathbf{E} + \mathbf{v} \times \mathbf{B})|_{\mathbf{x} = \mathbf{x}_{p}}.$$
 (3)

- **2** ρ projected onto a grid with a numerical convolution kernel and a sum over the particles (see details in the following).
- **\bigcirc** E obtained by resolving the Poisson equation and differenciating Φ on the grid:

$$\Delta_{h} \Phi_{\mathbf{j}} = -\frac{\rho}{\varepsilon_{\mathbf{0}}}, \quad \mathbf{E}_{\mathbf{j}} = -\nabla_{h} \Phi_{\mathbf{j}}, \tag{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

with Δ_h , ∇_h discrete operators on the grid with discretization h.

• Considering a leap frog scheme for the advance in time of the particles, a second order centered finite difference scheme for the field solver and the precedent framework for the projection of the density on the grid, the <u>error of the scheme </u>e scales with:

$$\epsilon \sim \Delta t^2, h^2,$$
 (Nh^d)^{-1/2}. (5) (mean number of particles per cell of the grid)^{-1/2}

Conditions of convergence are:

$$\Delta T \ll 1, \qquad \underbrace{h \ll 1, \quad N \gg h^{-d}}_{\text{require an extremely high number of particles}} \tag{6}$$

<日 > < 同 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0</p>

(2)(N-1/2)

 $ightarrow \epsilon$ depends exponentially on the dimension d of the problem (curse of dimensionality)

• Considering a leap frog scheme for the advance in time of the particles, a second order centered finite difference scheme for the field solver and the precedent framework for the projection of the density on the grid, the <u>error of the scheme </u>e scales with:

$$\epsilon \sim \Delta t^2, h^2,$$
 (mean number of particles per cell of the grid)^{-1/2}. (5)

• Conditions of convergence are:

$$\Delta T \ll 1, \qquad \underbrace{h \ll 1, \quad N \gg h^{-d}}_{\text{require an extremely high number of particles}} \tag{6}$$

 \rightarrow Slow convergence of the statistical error ($\mathcal{O}(N^{-1/2})$)

 $\rightarrow \epsilon$ depends exponentially on the dimension d of the problem (curse of dimensionality)

• **Combination technique** [4]: sparse grid method of interpolation based on representations of a function on anisotropic grids and linear combination:

() Considering anisotropic grids Ω_1 (*subgrids*) parametrized by an index $I = (l_1, l_2) \in \mathbb{N}^2$ veryfing $|I|_1 = n + 1 - \sigma$, for $\sigma = 0, 1$

Figure: Subgrids $\Omega_{(l_1, l_2)}$ for n = 3.

2) Sparse grid f^m_{ert} interpolant of degree m constructed on each Ω_{ert}

$$f_{l}^{m}(\mathbf{x}) := \sum_{\mathbf{j} \in \mathcal{J}_{l}} \alpha_{l,\mathbf{j}} \phi_{l,\mathbf{j}}^{m}(\mathbf{x}).$$

$$\tag{7}$$

<日 > < 同 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0</p>

*J*₁: index node set for grid Ω₁, φ^m_{1,j} B-spline of degree *m* centered at grid nodes of
 index j, α_{1,1} coefficients verifying interpolation conditions.

• **Combination technique** [4]: sparse grid method of interpolation based on representations of a function on anisotropic grids and linear combination:

() Considering anisotropic grids Ω_1 (*subgrids*) parametrized by an index $I = (l_1, l_2) \in \mathbb{N}^2$ veryfing $|I|_1 = n + 1 - \sigma$, for $\sigma = 0, 1$

Figure: Subgrids $\Omega_{(l_1, l_2)}$ for n = 3.

2) Sparse grid ${\mathfrak f}_{\mathsf I}^m$ interpolant of degree m constructed on each $\Omega_{\mathsf I}$:

$$f_{l}^{m}(\mathbf{x}) := \sum_{\mathbf{j} \in \mathcal{J}_{l}} \alpha_{l,\mathbf{j}} \phi_{l,\mathbf{j}}^{m}(\mathbf{x}).$$

$$\tag{7}$$

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

*J*₁ : index node set for grid Ω₁, φⁿ_{1,j} B-spline of degree *m* centered at grid nodes of
 index j, α_{1,1} coefficients verifying interpolation conditions.

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions		
		● 00000 000				
Combination technique						
Presentation of the combination technique						

• **Combination technique** [4]: sparse grid method of interpolation based on representations of a function on anisotropic grids and linear combination:

• Considering anisotropic grids Ω_1 (subgrids) parametrized by an index $I = (l_1, l_2) \in \mathbb{N}^2$ veryfing $|I|_1 = n + 1 - \sigma$, for $\sigma = 0, 1$

Figure: Subgrids $\Omega_{(l_1, l_2)}$ for n = 3.

2 Sparse grid f_1^m interpolant of degree *m* constructed on each Ω_1 :

$$f_{l}^{m}(\mathbf{x}) := \sum_{\mathbf{j} \in \mathcal{J}_{l}} \alpha_{l,\mathbf{j}} \phi_{l,\mathbf{j}}^{m}(\mathbf{x}).$$
(7)

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

*J*₁ : index node set for grid Ω₁, φ^m_{l,j} B-spline of degree *m* centered at grid nodes of
 index j, α_{l,1} coefficients verifying interpolation conditions.

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions		
	000	00000000	000	00		
Combination technique						
Presentation of the combination technique						

- Combination technique [4]:
 - Sparse grid interpolant constructed by linear combination of the partial interpolants of equation (7):

$$f_n^m(\mathbf{x}) := \sum_{\|\mathbf{i}\|_{\frac{1}{2}=n+1}} f_i^m(\mathbf{x}) - \sum_{\|\mathbf{i}\|_{\frac{1}{2}=n}} f_i^m(\mathbf{x})$$
(8)

Figure: Combination for n=3.

$$ightarrow$$
 Easily extensible in dimension $d \in \mathbb{N}$ [1].

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions		
		0000000				
Combination technique						
Combination technique						

Theorem (*d* dimension)

Let f be a smooth function with a pointwise error expression of the form:

$$f(\mathbf{x}) - f_l^m(\mathbf{x}) = \sum_{m=1}^d \sum_{\{1,...,m\} \subset \{1,...,d\}} \tau_{1,...,m}(\mathbf{x}; h_{l_1},...,h_{l_m}) h_{l_1}^2 ... h_{l_m}^2, \qquad (9)$$

with bounded $\|\tau_{1,...,m}(\cdot; h_{l_{1}},...,h_{l_{m}})\|_{\infty} \leq \kappa$. The sparse grid interpolant of the function converges to the exact solution in L^{p} -norm:

$$\|f_n^m - f\|_p = \mathcal{O}(\log_2(h_n^{-1})^{d-1}h_n^2), \qquad 1 \le p \le \infty,$$
(10)

500

-21 =

Proof.

See [1,4].

Remark

- Error: $\mathcal{O}(h_n^2)$ (classical) $\rightarrow \mathcal{O}(\log_2(h_n^{-1})^{d-1}h_n^2)$ (sparse)
- Complexity: $\mathcal{O}(h_n^{-d})$ (classical) $\rightarrow \mathcal{O}(\log_2(h_n^{-1})^{d-1}h_n^{-1})$ (sparse)

• Let $ilde{X}$ random variable with probability density function $\int ilde{f}_s(\cdot, \mathbf{v}) d\mathbf{v}$, where

$$ilde{f}_s = rac{q_s}{\mathcal{Q}_s} f_s, \ \mathcal{Q}_s$$
 the total charge of particles s .
 $ho(\mathbf{x}) = \mathcal{Q}\mathbb{E}[\delta(\mathbf{ ilde{X}} - \mathbf{x})].$

• δ substituted by a numerical convolution kernel S_d based on the cell width of the subgrid h_l :

$$\mathcal{S}_{d,\mathsf{I}}(\mathsf{x}) := \prod_{t=1}^{d} \frac{1}{h_{l_t}} \mathcal{S}\left(\frac{x_t}{h_{l_t}}\right), \quad \mathcal{S}(x_t) = \begin{cases} 1 - |x_t|, & \text{if } |x_t| \le 1, \\ 0, & \text{else.} \end{cases}$$
(12)

(11)

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

Figure: Examples of hierarchical shape function $S_{d,l}(x - x_p)$ in the two dimensional case.

Introduction Standard Particle-In-Cell Merging Particle-In-Cell with sparse grids Numerical results Conclusions O 00000000 000 Combination technique
Draigetion of the density anto the subgrids (Manta Carla)

- Projection of the density onto the subgrids (Monte-Carlo)
 - Let $ilde{X}$ random variable with probability density function $\int ilde{f}_s(\cdot, \mathbf{v}) d\mathbf{v}$, where

$$ilde{f}_s=rac{q_s}{\mathcal{Q}_s}f_s,\,\mathcal{Q}_s$$
 the total charge of particles s .

$$\rho(\mathbf{x}) = \mathcal{Q}\mathbb{E}[\delta(\tilde{\mathbf{X}} - \mathbf{x})].$$
(11)

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

• δ substituted by a numerical convolution kernel S_d based on the cell width of the subgrid h_l :

$$\mathcal{S}_{d,\mathsf{I}}(\mathsf{x}) := \prod_{t=1}^{d} \frac{1}{h_{l_t}} \mathcal{S}\left(\frac{x_t}{h_{l_t}}\right), \quad \mathcal{S}(x_t) = \begin{cases} 1 - |x_t|, & \text{if } |x_t| \le 1, \\ 0, & \text{else.} \end{cases}$$
(12)

Figure: Examples of hierarchical shape function $\mathcal{S}_{d,l}(x-x_p)$ in the two dimensional case.

• Since position particles are independant realizations of $\mathbf{\tilde{X}}$, we introduce a statistical estimator for the density:

$$\rho_{h,N}(\mathbf{x}) := \frac{\mathcal{Q}}{N} \sum_{p=1}^{N} \mathcal{S}_d\left(\frac{\mathbf{x} - \mathbf{x}_p}{h}\right).$$
(13)

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions
		000000000		
Combination tec	hnique			
Projection	n of the density or	ito the subgrids		

Proposition

Assuming enough smoothness on the probability density $ilde{f}(\cdot, \textbf{v}) \in X_4$, MSRE is:

$$\left(\int (\rho_{h,N}(\mathbf{x}) - \rho(\mathbf{x}))^2 d\mathbf{x}_{\rho}\right)^{\frac{1}{2}} \leq \mathsf{Bias}(\rho_{h,N}(\mathbf{x})) + \mathbb{V}[\rho_{h,N}(\mathbf{x})]^{\frac{1}{2}}, \tag{14}$$

where the bias and the square root variance are given by:

$$Bias(\rho_{l,j,N}) = \sum_{m=1}^{d} \sum_{\{1,...,m\} \subset \{1,...,d\}} \tau_{1,...,m}(\mathbf{x}_{l,j}; h_{l_1},...,h_{l_m}) h_{l_1}^2 ... h_{l_m}^2, \quad (15)$$

$$\left(\mathbb{V}[\rho_{l,j,N}]\right)^{\frac{1}{2}} = \mathcal{O}\left(\left(Nh_{n+1-\sigma}\right)^{-\frac{1}{2}}\right),\tag{16}$$

Proof.

See [1, 5].

Remark

• The bias expression (15) verifies the assumption of equation (9) in the combination technique theorem.

• Statistical error reduction :
$$(Nh_{n+1-\sigma})^{-\frac{1}{2}} < (Nh_n^d)^{-\frac{1}{2}}, \quad \sigma = 0, ..., d-1$$

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions		
		000000000				
Subgrid Particle-In-Cell scheme						
Subgrid Particle-In-Cell scheme						

 ρ projected onto each subgrid Ω_I, E solved on each subgrid and interpolated at
 particle positions with combination technique:

$$\mathbf{E}_{n}^{m}(\mathbf{x}_{p}) := \sum_{|\mathbf{l}|_{1}=n+1} \mathbf{E}_{\mathbf{l}}^{m}(\mathbf{x}_{p}) - \sum_{|\mathbf{l}|_{1}=n} \mathbf{E}_{\mathbf{l}}^{m}(\mathbf{x}_{p}), \tag{17}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

with $\mathbf{E}_{\mathbf{I}}^{m}(\mathbf{x}_{p})$ the sparse grid interpolant of the electric field on the subgrid $\Omega_{\mathbf{I}}$.

• Noise reduction (ρ projected onto grids with larger cells) and acceleration of the resolution of the electric field (complexity falls from $\mathcal{O}(h_n^{-d})$ to $\mathcal{O}(\log_2(h_n^{-1})^{d-1}h_n^{-1}))$.

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions
		000000000		
Properties of th	e scheme			
Converge	nce of the sparse	grid interpolant		

Theorem (Convergence of the electric field interpolant)

Assuming enough smoothness on ρ so that $\Phi \in X_{5,0}(\gamma)$, $\rho \in X_5(\kappa)$, the sparse grid interpolant of the electric field converges to the exact solution in L^p -norm:

$$\|\boldsymbol{E}_{n}^{m}-\boldsymbol{E}\|_{p}=\mathcal{O}\left(\log_{2}(h_{n}^{-1})^{d-1}\left(h_{n}^{2}+(Nh_{n})^{-\frac{1}{2}}\right)\right), \quad 1 \leq p \leq \infty,$$
(18)

where ${m E}=abla \Phi$, $\Delta \Phi=ho/arepsilon_{0}$.

Proof.

See [1].

Remark

- The statistical error scales with $\log_2(h_n^{-1})^{d-1}(Nh_n)^{-\frac{1}{2}}$ in comparison to $(Nh_n^d)^{-\frac{1}{2}}$ for the standard PIC method.
- Strong dependance on cross derivatives of the solutions in estimation (18)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions	
		00000000			
Benefits, drawbacks and alternatives					
Alternativ	es				

• Alternatives in order to alleviate the cross derivative dependances:

• Offset combination technique [1] inspired from the truncated combination technique [3, 6] where fewer subgrids are considered in the combination

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

- Correction of the Subgrid scheme with an enhancement of the subgrids at the resolution of the electric field (Enhanced Subgrid PIC scheme [1])
- Other alternatives proposed in [1].

Introduction O	Standard Particle-In-Cell 000	Merging Particle-In-Cell with sparse grids	Numerical results ●୦୦	Conclusions 00
Numerical	results			

- Diocotron instability (2D): Not favorable to sparse grid techniques (non-aligned with the grid structures arising in the simulation, high cross derivatives terms).
 - Electrons immersed in a uniform, immobile, background of ions
 - Fixed magnetic field $\mathbf{B} = (0, 0, B_z)$
 - Deformation of the initially axisymmetric electron density distribution, leading, to the formation of vortices

Figure: Diocotron instability. Electron charge density at t = 0 (left), $t = T_1$ (right).

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions
	000	00000000	000	00
Numerarian	l maguilta			

Numerical results

Figure: Standard PIC $P_c = 200$ (a) Standard PIC, $P_c = 40$ (b), Subgrid $P_c = 40$ (d), Enhanced Subgrid (offset) $P_c = 40$ (e). Grid resolution 256 × 256 cells (a), (b), (e) / 1024 × 1024 cells (d).

<□> < @> < E> < E> EI= のQ@

Introduction	Standard Particle-In-Cell	Merging Particle-In-Cell with sparse grids	Numerical results	Conclusions
	000	00000000	000	00

• Subgrid scheme (d):

 $\oplus pprox 11$ times less total particles in the simulation

(+) Acceleration of the resolution of electric field

- Higher spatial discretization required (strong dependance on cross derivatives

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のの⊙

of the solution)

Fails to reproduce fine-scale structure.

- Enhanced Subgrid scheme (offset) (e):
 - $(+) \approx 7.25$ times less total particles in the simulation
 - (+) Acceleration of the resolution of electric field
 - (+) Same spatial discretization
 - Reproduces correctly the fine-scale structure.

Introduction O	Standard Particle-In-Cell 000	Merging Particle-In-Cell with sparse grids	Numerical results 000	Conclusions ●0
Conclusio	ns			

- ① Reduction of the total number of particles + reduction of the complexity of the Poisson equation
- (-) Stronger dependence on the high order cross derivatives of the solution (compensated by the alternatives)
- Interest of the method significantly higher in dimension 3.

Figure: Total number of particles N as function of the grid resolution.

- Perspectives:
 - Assessment of the method and alternative methods on "more physical" test cases in dimension 2.
 - implementation and optimisation of performance in term of computational time and memory storage in dimension 3
 ←□→ ←⑦→ ←⑦→ ←⑦→ →⑦→ ○○○

Introduction O	Standard Particle-In-Cell 000	Merging Particle-In-Cell with sparse grids	Numerical results 000	Conclusions ○●
Reference	S			

- M. Chung To Sang, F. Deluzet, G. Fubiani, L. Garrigues, C. Guillet, J.Narski, Sparse Grid interpolation for Particle-In-Cell.
 - L. F. Ricketson, A. J. Cerfon, Sparse grid techniques for particle-in-cell schemes, Plasma Physics and Controlled Fusion 59 (2) (2016) 024002.
- S.Muralikrishnan, A. J. Cerfon, M. Frey, L. F. Ricketson, A. Adelmann, Sparse grids adaptative noise reduction strategy for Particle-In-Cell schemes, Journal of Computational Physics (2020).
- - M.Griebel, The combination technique for the sparse grid solution of pde's on multiprocessor machines Parallel Process (1992). Lett. 2 61–70.

E.Sonnendrücker, Numerical Methods for the Vlasov-Maxwell equations (2015).

J. Benk, D. Pflüger, Hybrid parallel solutions of the Black-Scholes PDE with the truncated combination technique, in: 2012 International Confer- ence on High Performance Computing and Simulation (HPCS), IEEE, 2012, pp. 678–683.

• Number of particles per cell (2D) defined for the regular Particle-In-Cell method (19) and the sparse grid one (20) :

$$P_c = \frac{N}{h_n^{-2}L^2} = N2^{-2n},\tag{19}$$

$$P_{c} = \frac{N}{nh_{n+1}^{-1}L + (n-1)h_{n}^{-1}L} = \frac{N2^{-n}}{3n-1}.$$
 (20)

• Combination technique in dimension $d \in \mathbb{N}$:

$$f_n^m(\mathbf{x}) := \sum_{\sigma=0}^{d-1} (-1)^{\sigma} {d-1 \choose \sigma} \sum_{\mathbf{l} \in \mathcal{L}(n,\sigma) \mathbf{j} \in \mathcal{J}_{\mathbf{l}}} \sum_{\alpha_{\mathbf{l},\mathbf{j}} \phi_{\mathbf{l},\mathbf{j}}^m(\mathbf{x}),$$
(21)

with

$$\mathcal{L}(n,\sigma) := \{ \mathbf{I} \in \mathbb{N}^d \mid |\mathbf{I}|_1 = n + d - 1 - \sigma, \ \mathbf{I} \ge (1,...,1) \},$$
(22)

<□> < @> < E> < E> E|= のQ@

Appendix: Outline of the scheme

Particles represented and evolved like in equation (3).

(a) ρ projected onto each subgrid Ω_{I} , $|I|_{1} = n + d - 1 - \sigma$, for $\sigma = 0, ..., d - 1$ with the hierarchical estimator defined in equation (13).

 \bullet E resolved on each subgrid Ω_{I} from Poisson equation and by differenciation:

$$\mathbf{E}_{\mathbf{l},\mathbf{j}} = -\nabla_{h_{\mathbf{l}}} \Phi_{\mathbf{l},\mathbf{j}}, \quad \Delta_{h_{\mathbf{l}}} \Phi_{\mathbf{l},\mathbf{j}} = -\frac{\rho_{\mathbf{l},\mathbf{j},N}}{\varepsilon_{\mathbf{0}}}, \tag{23}$$

with ∇_{h_l} , Δ_{h_l} discrete second order finite difference operators defined on Ω_l and depending on the subgrid discretization h_l .

E evaluated at particle positions using the combination technique:

$$\mathsf{E}_{n}^{m}(\mathsf{x}_{p}) := \sum_{|||_{1}=n+1} \mathsf{E}_{\mathsf{I}}^{m}(\mathsf{x}_{p}) - \sum_{|||_{1}=n} \mathsf{E}_{\mathsf{I}}^{m}(\mathsf{x}_{p}), \tag{24}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

with $\mathbf{E}_{\mathbf{I}}^{m}(\mathbf{x}_{p})$ the sparse grid interpolant of the electric field on the subgrid $\Omega_{\mathbf{I}}$.

Appendix: Total momentum preservation

Theorem (Total momentum)

Assuming periodic boundary conditions, B1-splines for the combination technique, the scheme does preserve the total momentum of the system, i.e

$$\frac{d\mathcal{P}}{dt} = 0, \tag{25}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\mathcal{P} = m \iint \mathbf{v} f_N(\mathbf{x}, \mathbf{v}, t) d\mathbf{x} d\mathbf{v}$ is the total momentum.

Proof.

See [1].

Appendix: Non-linear Landau damping (25 times less particles)

(a)

(f)

(g)

(h)

Figure: STD (a), HG (classical) (f), SG (classical) (g), ESG (offset) (h), OHG (offset) (i) schemes. $P_c = 1000$ (a), $P_c = 250$ (f), (g), (h), (i)

<□> <0><</p>