(日)

Modelling temozolomide chronoefficacy: from cellular pharmacokinetics-pharmacodynamics to heterogeneous cancer cell population

Hugo Martin

June 22, 2021

Glioblastoma multiforme (GBM)

- Most frequent and agressive brain tumor
- Yet rare: 2 or 3 cases per 100000 people in Europe and USA
- Standard treatment: surgery, radiotherapy and chemotherapy
- Median survival duration ${\sim}18$ months

イロト 不得 トイヨト イヨト

• Cornerstone of treatment: temozolomide (TMZ)

Personnalized therapy

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへ⊙

A quick presentation of the data	PK-PD chronoefficacy	Addition of inter cell heterogeneity	Discussion, future work
• 00000	00000000000	00000	000

- A quick presentation of the data
- PK-PD chronoefficacy
- 3 Addition of inter cell heterogeneity
- 4 Discussion, future work

A quick presentation of the data	PK-PD chronoefficacy	Addition of inter cell heterogeneity	Discussion, future work
0 •0000	00000000000	00000	000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A quick presentation of the data

- 2 PK-PD chronoefficacy
- 3 Addition of inter cell heterogeneity
- 4 Discussion, future work

Rhythms in genes expression in male mes-GBM astrocytes¹

Rhythms of two clock genes: Per2 and Bmal1

Rhythm in Bmal1 RNA activity. Arrows: ttimes of administration of the drug

¹Slat et al., Journal of Biological Rhythms, 2017 < => < => < => < => > = - > < <

Result of treatments at different CT

Proportion of cells with brightness higher than a fixed threshold

Ratio of the number of living cells after treatment over control

- TMZ: main drug against GBM, with initial concentration 1 mM
- DMSO: vehicle, liquid in which TMZ is diluted

Combined circadian times

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Scaling:

A closer look: treatment at different circadian times

- * ロ * * 御 * * 注 * * 注 * こ き - のへで

A quick presentation of the data	PK-PD chronoefficacy	Addition of inter cell heterogeneity	Discussion, future work
0 00000	000000 00000	00000	000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 2 PK-PD chronoefficacy
 - Model
 - Fitting procedure and best fit
- 3 Addition of inter cell heterogeneity
- 4 Discussion, future work

Published model of TMZ cellular PK²

PK parameters estimated on experimental data.

²Ballesta et al., CPT: pharmacometrics and systems pharmacology, 2014 📱 🤊 🔍

Single cell level: a PK -PD model

$$V_{out} \frac{\mathrm{d}[TMZ_{out}]}{\mathrm{d}t} = -p_{T_{out}}[TMZ_{out}] + p_{T_{in}}[TMZ_{in} - k_{T_{out}}V_{out}[TMZ_{out}]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$V_{in}\frac{\mathrm{d}[TMZ_{in}]}{\mathrm{d}t} = p_{T_{out}}[TMZ_{out}] - p_{T_{in}}[TMZ_{in}] - k_{T_{in}}V_{in}[TMZ_{in}]$$

$$\frac{\mathrm{d}[MTIC]}{\mathrm{d}t} = k_{T_{in}}[TMZ_{in}] - k_{M_{in}}[MTIC]$$

$$\frac{\mathrm{d}[C]}{\mathrm{d}t} = k_{M_{in}}[MTIC] - k_{add}[C] - k_{cat}[C]$$

$$\frac{\mathrm{d}D}{\mathrm{d}t} = k_{DMSO} + k_{add}[C] - k_{HR}D$$

Single cell level with rhythm on repair: model ${\cal R}$

$$V_{out} \frac{\mathrm{d}[TMZ_{out}]}{\mathrm{d}t} = -p_{T_{out}}[TMZ_{out}] + p_{T_{in}}[TMZ_{in} - k_{T_{out}}V_{out}[TMZ_{out}]$$

$$V_{in}\frac{\mathrm{d}[TMZ_{in}]}{\mathrm{d}t} = p_{\mathcal{T}_{out}}[TMZ_{out}] - p_{\mathcal{T}_{in}}[TMZ_{in}] - k_{\mathcal{T}_{in}}V_{in}[TMZ_{in}]$$

$$\frac{\mathrm{d}[MTIC]}{\mathrm{d}t} = k_{T_{in}}[TMZ_{in}] - k_{M_{in}}[MTIC]$$

$$\frac{\mathrm{d}[C]}{\mathrm{d}t} = k_{M_{in}}[MTIC] - k_{add}[C] - k_{cat}[C]$$

$$\frac{\mathrm{d}D}{\mathrm{d}t} = (k_{DMSO} + k_{add}[C]) - k_{HR}D\left(1 + A\cos\left(\frac{2\pi}{T_{Bmall}}(t - \varphi)\right)\right)$$

²Ballesta et al., CPT: pharmacometrics and systems pharmacology, 2014 🚊 🔗 ૧.૯

A quick presentation of the data 00000 Addition of inter cell heterogeneity Discussion, future work 00000 0000 0000 0000 0000 0000

Single cell level with rhythm on damage formation: model ${\cal D}$

$$V_{out} \frac{\mathrm{d}[TMZ_{out}]}{\mathrm{d}t} = -pT_{out}[TMZ_{out}] + pT_{in}[TMZ_{in} - kT_{out}V_{out}]TMZ_{out}]$$

$$V_{in}\frac{\mathrm{d}[TMZ_{in}]}{\mathrm{d}t} = pT_{out}[TMZ_{out}] - pT_{in}[TMZ_{in}] - kT_{in}V_{in}[TMZ_{in}]$$

$$\frac{\mathrm{d}[MTIC]}{\mathrm{d}t} = kT_{in}[TMZ_{in}] - kM_{in}[MTIC]$$

$$\frac{\mathrm{d}[C]}{\mathrm{d}t} = k_{M_{in}}[MTIC] - k_{add}[C] \left(1 + A\cos\left(\frac{2\pi}{T_{Bmall}}(t - \varphi)\right)\right) - k_{cat}[C]$$

$$\frac{\mathrm{d}D}{\mathrm{d}t} = (k_{DMSO} + k_{add}[C]) \left(1 + A \cos\left(\frac{2\pi}{T_{Bmall}}(t - \varphi)\right) \right) - k_{HR}D$$

▲ロト ▲圖ト ▲目ト ▲目ト

æ

Population level: a structured PDE

- Structuration of the population in DNA damage d
- Two phenomena at work: transport and death

$$\begin{cases} \frac{\partial}{\partial t}u(t,d) + \frac{\partial}{\partial d}\left(F(t,d)u(t,d)\right) + \mu(d)u(t,d) = 0\\ u(t,0) = 0, \quad u(0,x) = u_0(x) \end{cases}$$

with the velocity field given by the last ODE of the system:

$$\frac{\mathrm{d}D}{\mathrm{d}t}=F(t,D(t))$$

and death term:

$$\mu(d) = C \frac{d^n}{K^n + d^n}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Initial distribution

 u_0 gien by the probability density function of a loglogistic distribution fitted on the data without treatment

Explicit solution

For generality, let write

$$F(t,d) = \rho_1(t)f(t) - \rho_2(t)k_{HR}d$$

with
$$f(t) = k_{DMSO} + k_{add}[C]$$
.

Recall:

•
$$\rho_1(t) = 1$$
 and $\rho_2(t) = 1 + A\cos\left(\frac{2\pi}{T}(t-\phi)\right)$ in model \mathcal{R}
• $\rho_1(t) = 1 + A\cos\left(\frac{2\pi}{T}(t-\phi)\right)$ and $\rho_2(t) = 1$ in model \mathcal{D}

Explicit solution with the method of Characteristics

$$u(t,d) = u_0 \left(d \mathrm{e}^{k_{HR} \int_0^t \rho_2(s) \mathrm{d}s} - \int_0^t \rho_1(s) f(s) \mathrm{e}^{k_{HR} \int_0^s \rho_2(\sigma) \mathrm{d}\sigma} \mathrm{d}s \right)$$
$$\times \mathrm{e}^{k_{HR} \int_0^t \rho_2(s) \mathrm{d}s} \mathrm{e}^{-\int_0^t \mu \left(d \mathrm{e}^{k_{HR} \int_\tau^t \rho_2(s) \mathrm{d}s} - \int_\tau^t \rho_1(s) f(s) \mathrm{e}^{k_{HR} \int_\tau^s \rho_2(\sigma) \mathrm{d}\sigma} \mathrm{d}s \right)} \mathrm{d}\tau$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A quick presentation of the data	PK-PD chronoefficacy	Addition of inter cell heterogeneity	Discussion, future work
0 00000	0000000000000	00000	000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

PK-PD chronoefficacy

- Model
- Fitting procedure and best fit
- 3 Addition of inter cell heterogeneity
- 4 Discussion, future work

Fitness evaluation and minimization

- Denote e_0, \dots, e_{K+1} the edges of the bars plot (= space discretization) with constant step Δe
- 2 Denote h_0, \cdots, h_K the heights in the bars plot
- Compute p_0, \cdots, p_K as $p_k = h_k imes \Delta e$ the area between e_k and e_{k+1}

$$\widetilde{u}_{\textit{param}}(t,d) := rac{u_{\textit{param}}(t,d)}{\int_{0}^{\infty} u_{\textit{param}}(t,d') \mathrm{d}d'}$$

6 Kinetic parameters:

 $param = \{k_{DMSO}, k_{TMZ}, A, \varphi, k_{HR}, C, K, n\}$

Compute with CMA-ES³

$$\min_{\textit{param}} \sum_{k=0}^{K} \left(\int_{e_k}^{e_{k+1}} \tilde{u}_{\textit{param}}(t, d) \mathrm{d}d - p_k \right)^2$$

³Hansen, Towards a new evolutionary computation. Advances in estimation of distribution algorithms, 2006

Best fit for model ${\mathcal R}$

A quick presentation of the data 000000 Addition of inter cell heterogeneity 000000 Discussion, future work 0000

Best fit for model ${\mathcal D}$

In models \mathcal{R} and \mathcal{D} , the main behavior is captured, but there is a lack of spreading.

A quick presentation of the data	PK-PD chronoefficacy	Addition of inter cell heterogeneity	Discussion, future work
0 00000	00000000000	●0000	000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A quick presentation of the data
- 2 PK-PD chronoefficacy
- 3 Addition of inter cell heterogeneity
- 4 Discussion, future work

Addition of a heterogneity parameter

4

We aim at a spreading of the distribution \Rightarrow inclusion of a variability parameter $v \in (0, 1)$, that modulates the speed of the drug-induced DNA damage formation.

$$\begin{cases} \frac{\partial}{\partial t}u^{\mathbf{v}}(t,x) + \frac{\partial}{\partial d}\left(F^{\mathbf{v}}(t,d)u^{\mathbf{v}}(t,d)\right) + \mu(d)u^{\mathbf{v}}(t,d) = 0\\ u^{\mathbf{v}}(t,0) = 0, \qquad u_0^{\mathbf{v}}(d) = u_0(d) \quad \forall \mathbf{v} \in (0,1) \end{cases}$$

$$F^{\mathbf{v}}(t,d) = \mathbf{v}(k_{basal} + k_{add}[C]) \left(1 + A \cos\left(\frac{2\pi}{T_{Bmall}}(t-\varphi)\right) \right) - k_{HR}d$$

Example: heterogeneity and rhythm on damage formation \rightarrow model $\mathcal{D}-\mathcal{D}$

Hypothesis on the heterogeneity

 $B(v) = cste imes (x(1-x))^b$ with $b \geqslant 1$ a newly estimated parameter

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Best fit of phospho H2AX data for model $\mathcal{D}-\mathcal{D}$

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

A quick presentation of the data PK-PD chronoefficacy OOOOO Discussion, future work OOOOO

Parameters of the best fits

Heterogeneity	Ø	Ø	Damage
Rhythm	Damage	Repair	Damage
RMSE	2.78	2.79	1.14
Parameter (unit)			
$k_{DMSO} (\mu M.h^{-1})$			$6.60 \cdot 10^{-5}$
$k_{TMZ} (h^{-1})$			0.036
A			0.05
arphi (h)			3 <i>h</i> 46
$k_{HR} (h^{-1})$			0.035
$C(h^{-1})$			7.08
$K \; (\mu M)$	$1.02 \cdot 10^{-7}$	$3.33 \cdot 10^{-7}$	$2.45 \cdot 10^{-4}$
п	8.82	26.07	0.79
b			17.9

Parameters of the best fits

Heterogeneity	Ø	Ø	Damage
Rhythm	Damage	Repair	Damage
RMSE	2.78	2.79	1.14
Parameter (unit)			
$k_{DMSO} (\mu M.h^{-1})$			$6.60 \cdot 10^{-5}$
$k_{TMZ} (h^{-1})$			0.036
A			0.05
arphi (h)			3 <i>h</i> 46
$k_{HR} (h^{-1})$			0.035
$C(h^{-1})$			7.08
Κ (μM)	$1.02 \cdot 10^{-7}$	$3.33 \cdot 10^{-7}$	$2.45 \cdot 10^{-4}$
п	8.82	26.07	0.79
b			17.9

At least one model able to fit the data, that necessarily includes tumor heterogeneity.

Discussion: death term

Not S-shaped, no threshold effect

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

A quick presentation of the data PK-PD chronoefficacy Addition of inter cell heterogeneity 00000 OOOO December 2000

Discussion

Straightforward changes in the model: death term $\longrightarrow \mu(d) = Cd^n$

Inclusion of other datasets and changes in the model:

- Population of dying cells: temporal data in concentration of Caspase 3
- Death term \longrightarrow transfer term. Ex of model:

$$\frac{\mathrm{d}C3}{\mathrm{d}t} = \int_0^\infty \mu(d)u(t,d)\mathrm{d}d - C3$$

Data integration:

- Include inhibition of growth data
- Calibrate the models $\mathcal{D}-\mathcal{R},\ \mathcal{R}-\mathcal{D}$ and $\mathcal{R}-\mathcal{R}$
- Compare these models to obtain (hopefully!) biological insights

IBOMAN

IBOMAN 2021 – Interplay between oncology, mathematics and numerics: focus on treatment studies

25-27 Oct 2021 Paris (France)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

MAIN MENU

Home

Registration

Abstract submission

List of Participants

This 2021 edition will focus on the topic of treatment, with sessions related to identifying new therapeutic targets or predicting the effect of a treatment. In addition to the talks of young researchers, a master class will be scheduled, as well as talks given by senior researchers who sponsor the conference. To complete the program, a step-aside talk will be provided, in order to stimulate more general discussions around science.

Although mathematics and physics have a long history of interaction, interdisciplinary projects where mathematics interacts with

biology and medicine have only become a hot topic in the last decades. To foster such interactions, we offer young researchers to meet each other during a conference highlighting the interplay between oncology, mathematics and numerics; the IBOMAN

conference is an opportunity to give the floor to young people involved in interdisciplinary projects related to cancer research,

HELP

@ Contact

SCHEDULE

SCOPE

SPEAKERS

whether fundamental or applied.

- · Lucie Laplane : Clonal evolution: of which clones?
- Hugues de Thé : Dissecting the mode of action of targeted leukemia therapies
- · Victor Pérez-Garcia : Scaling laws, evolutionary dynamics and imaging biomarkers in cancer: from the blackboard to the clinics and back