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Paris Nord) and Viet Chi Tran (Univ Gustave Eiffel)

Biennale SMAI 21-24 Juin 2021



Motivations

The motivation of this work is to discover the structure and the topology of a

hidden network: drug users, MSM,...

MSM
heterosexual man
woman

Figure 1: Sexual contacts in a

population in Cuba1
Figure 2: RDS on the HCV

population2

å detect the identities of hidden individuals by exploring the graphs.

å Proposed methods: Respondent Driven Sampling (RDS)3,...

1. Clémençon et al. (2015)

2. Jauffret-Roustide et al. en cours (2020)

3. Respondent Driven Sampling: a new approach to the study of hidden populations; Heckathorn (1997)
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Respondent Driven Sampling

There are c coupons distributed at each turn of the interview.

interviewed
having coupon but have not been interviewed yet
have been named but without coupon

Step 0 Step 1

Step 2 Step 3
2



Mathematical framework

At step n ∈ N∗:

• n = # individuals interviewed;

• An = # individuals having coupons but have not

been interviewed yet;

• Bn = # mentioned but have not get any coupon;

• N- (n + An + Bn) = # vertices not-explored.

An+1 =An − 1{An≥1} + Zn+1 ∧ c,

Bn+1 =Bn + Hn+1 − Zn+1 ∧ c

Let Xn = (An,Bn) be the RDS process to be studied.

When N tends to +∞, what is the behavior of (Xn)n≥1 ?
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Exploration of sparse random graphs: Erdös-Rényi and SBM (1/2)

The renormalized process: XN
t = 1

N
(AbNtc,BbNtc).

On the sparse supercritical Erdös-Rényi graphs ER(N, λ/N), and more general,

on the sparse SBM: (AN ,BN)
(d)−→ (a, b).
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Figure 3: Comparing of XN with the solution of ODEs xt (dashed line) for c = 3,

λ = 2.

? TCL associated to the convergence is established.
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Exploration of a sparse random graphs: Erdös-Rényi and SBM (2/2)

? Study the size of graph explored in function of the number of coupons c.
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Figure 4: Computation of the probability P(τ > n0|A0 = 1) of obtaining a sample of

size at least n0 starting from 1, with c varying from 1 to 10 (colors) and n0 varying

between 1 and 100 (abscissa).

t0 = inf{t ∈ (0, 1) : at = 0}.

c 1 2 3 4 5 6

t0 0.426 0.775 0.818 0.827 0.829 0.829
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Random walk: RDS with c=1

F Denote X (n) = (X1, ...,Xn) the explored nodes after n steps.

F Hn = (Vn,En) the path of nodes visited by the random walk:

Vn = {X1, ...,Xn} and En = ∪n−1
i=1 {Xi ,Xi+1}

F Gn = G(X (n),Hn, κ): the subgraph discovered.
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Stochastic Block Model (SBM) and schema of the observations on graphs

Stochastic Block Model1

A1 A2

A3

π••

B1

B2

B3

B4

B5

π••

C1

C2

π••

π••

π••

π••

Q blocks (classes)

α = (α1, ..., αQ) proportions of blocks

π = (πqr )q,r∈[[1,Q]] probabilities of

connection

F The observations:

• the random walk X (n);

• the types Z = (Z1, ...,Zn);

• the adjacency matrix: Y = (Yij)i,j∈{1,...,n}.

F The parameter to estimate: θ = (α, π).

1. The graph of SBM is draw by Julien Chiquet and Catherine Matias.
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The form of explored subgraph - Graphon

Graphon is a symmetric function: κ : [0, 1]2 7→ [0, 1].

n = 5 n = 100

α1

α1

1

0 1

π11

π22π12

π21

x

y

n→∞
F Associate to Gn a graphon κ:

κ : (x , y) 7→ 1Ydnxe,dnye=1.

F ”Infinite” graphs:

• Erdös-Rényi κ ≡ p;

• SBM(Q, α, π): I = (I1, ..., IQ) a partition of [0,1] such that |Iq| = αq. Then

If x ∈ Iq, y ∈ Ir , κ(x , y) = πqr .
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Metric on the space of graphs, graphons

O For a graph G of n vertices and F a graph of k ≤ n vertices, we define:

t(F ,G) =
|inj(F ,G)|

(n)k

and for the graphon κ:

t(F , κ) =

∫
[0,1]k

∏
{i,j}∈E(F )

κ(xi , xj)dx1 . . . dxk .

O Let (Fi )i∈N∗ be an enumeration of all the finite graphs. We define:

dsub(G , κ) =
∑
i≥1

1

2i
|t(Fi ,G)− t(Fi , κ)|

Prop: When the size of graph Gn tends to infinity, the SBM graph converges

to an SBM graphon for the distance dsub.
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The random walk on a graphon

F X (n) = (X1, ...,Xn) a RW on κ,

Xi ∈ [0, 1] with the transition kernel:

P(x , dy) =
κ(x , y)dy∫ 1

0
κ(x , v)dv

F X (n) admits a stationary measure:

m(dx) =

∫ 1

0
κ(x , v)dv∫ 1

0

∫ 1

0
κ(u, v)du dv

dx .

F Gn = G(X (n),Hn, κ) constructed by X (n) and the graphon κ.
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The random walk on a dense SBM

For the SBM(Q, α, π), the

associated graphon is:

κ(x , y) =
Q∑

q=1

Q∑
r=1

πqr 1Iq (x)1Ir (y).

Prop:
The random walk X (n) on the graphon κ admits unique invariant measure:

m(dx) =

∫ 1

0
κ(x , v)dv∫ 1

0

∫ 1

0
κ(u, v)du dv

dx =

∑Q
q=1

(∑Q
r=1 πqrαr

)
1Iq (x)∑Q

q=1

∑Q
r=1 πqrαqαr

dx . (1)
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Limit of explored subgraph

Proposition1

lim
n→∞

dsub
(
Gn, κΓ−1

)
= 0, a.s.

where Γ is distribution function of m and Γ−1 is the generalized inverse of Γ and

κΓ−1 (x , y) = κ(Γ−1(x), Γ−1(y)).

For Q = 2:

Γ(α) =
(π11α + π12(1− α))α

π11α2 + 2π12α(1− α) + π22(1− α)2

å Γ−1 is not known if X (n) are not observed.

å How can we estimate κ from the subgraph Gn?.

1. Dense graph limits under Respondent Driven Sampling; Athreya and Röllin. Annals of Applied Probability

(2016).
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Estimation methods

Complete observations

Method 1: Maximum likelihood

Method 2: De-biased graphon

Incomplete observations

Method 3: Maximum likelihood by SAEM

Method 4: De-biased graphon by VEM
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Complete observations

F Suppose that X (n),Z ,Y are observed:

Nq
n = number of nodes of type q

Nq↔r
n = number of edges of type qr .

For the SBM without bais:

L(Zi ,Yij ; i , j ∈ X (n); θ) =
n!

N1
n ! · · ·NQ

n !

Q∏
q=1

α
Nq
n

q ×
∏

1≤i,j≤n
i 6=j

π
Yi,j

ZiZj
(1− πZiZj )

(1−Yi,j )

FWithout biases, the classical MLE:

α̂class
q =

Nq
n

n
, π̂class

qr =
Nq↔r

n

Nq
nN r

n
, π̂class

qq =
2Nq↔q

n

Nq
n (Nq

n − 1)
.
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Method 1: Complete observations + ML

F With the biases:

L(Zi ,Yij ; i , j ∈ X (n); θ) =

∏n
i=1 αZi∏n−1

i=1

∑Q
q=1 πZi qαq

×
∏

1≤i,j≤n
i 6=j

π
Yij

ZiZj
(1− πZiZj )

1−Yij ,

(2)

Proposition
The ML estimator θ̂ = (π̂, α̂) is solution of:

Nq
n

α̂q
−

Q∑
p=1

(Np
n − 1Zn=p)π̂pq∑Q
q′=1 π̂pq′ α̂q′

=
N r

n

α̂r
−

Q∑
p=1

(Np
n − 1Zn=p)π̂pr∑Q
q′=1 π̂pq′ α̂q′

;

Nq↔q
n

π̂qq
− Nq=q

n

1− π̂qq
− (Nq

n − 1Zn=q)α̂q∑Q
q′=1 π̂qq′ α̂q′

= 0;

Nq↔r
n

π̂qr
− Nq=r

n

1− π̂qr
− (Nq

n − 1Zn=q)α̂r∑Q
q′=1 π̂qq′ α̂q′

− (N r
n − 1Zn=r )α̂q∑Q
q′=1 π̂rq′ α̂q′

= 0 if q 6= r .
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Method 2: Complete observation + de-biased graphon(1/2)

F By Athreya & Röllin: Gn −→ κΓ−1 , where κΓ−1 =: κθ̃ and θ̃ := (α̃, π).

The classical estimator for α̃, π (neglecting the biases):

λ̂n
q :=

Nq
n

n
;

π̂n
qr :=

Nq↔r
n

Nq
nN r

n
for q 6= r and π̂n

qq :=
2Nq↔q

n

Nq
n (Nq

n − 1)
.

F χ̂n(x , y) the graphon associated to (λ̂n, π̂n).

Proposition

(i) When n→ +∞,

lim
n→+∞

dsub(Gn, χ̂n) = 0. (3)

(ii) The limit χ̂n is then the biased graphon κΓ−1 .

lim
n→+∞

dsub(χ̂n, κΓ−1 ) = 0. (4)
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Method 2: Complete observation + de-biased graphon(2/2)

F The 2-stage estimation:

1st step: Estimate θ̃ = (α̃, π):

• π̂n is a consistent estimator of π:

lim
n→+∞

π̂n = πqr ,

• and λ̂n
q is a consistent estimator of α̃:

lim
n→+∞

λ̂n
q = Γ(

q∑
r=1

αr )− Γ
( q−1∑

r=1

αr

)
= α̃q.

2nd step: Correct the estimator θ̃ to obtain θ

A consistent estimator of αq is

α̂n
q = Γ−1

n

( q∑
r=1

λ̂n
r

)
− Γ−1

n

( q−1∑
r=1

λ̂n
r

)
. (5)

In the case Q = 2, an estimator for α1 is α̂n
1 = Γ−1

n (λ̂n
1).
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Method 3 (1/2): Incomplete observations + SAEM

Suppose that we observe only Yij and Zi are unknown.

F The incomplete likelihood:

L(Yij ; i , j ∈ [[1, n]]; θ) =
Q∑

q1,···qn=1

[ n∏
i=1

1Zi=qi

∏n
i=1 αqi∏n−1

i=1

∑Q
q=1 πqi qαq

×
∏

1≤i,j≤n
i 6=j

b(Yij , πqi qj )
]
,

å The sum of q ∈ {1, ..,Q} is not tractable.

å Use the SAEM approach the MLE numerically.
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Method 3 (2/2): Incomplete observations + SAEM

Given θ(k−1) = (α(k−1), π(k−1)), at the iteration keme:

F Step 1: Choose the appropriate proposal Z ;

We follow the variational approach of Daudin et al.1: choose Zi by a

multinomal distribution of parameter τiq,

τiq ∝
αq∑Q

`=1 πq`α`

∏
i 6=j

Q∏
`=1

b(Yij , πq`)
τj` . (6)

F Step 2: Stochastic approximation, update the quantity:

Q(k)(θ) = Q(k−1)(θ) + sk
(

logL(Z
(k)
i ,Yij , θ)−Q(k−1)(θ)

)
;

F Step 3: Maximization:

θ(k) := arg max
θ
Q(k)(θ).

1. Coupling a stochastic approximation version of EM with an MCMC procedure; Kuhn and Lavielle. ESAIM:ps

(2004).
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Method 4a: Incomplete observations (Z is unobserved and X (n) is observed)

+ graphon de-biasing

Suppose that (Z1, ...,Zn) are unobserved, but the positions (X1, ...,Xn) are

observed.

Step 1: Neglecting the sampling biases and using the variational EM algorithm

(VEM):

• Using EM algorithm to estimate (λ, π);

• Choosing the types Zi based on the information of X (n).

Step 2: Estimate the cumulative distribution function Γn, then deduce the

estimator α̂n of α and thus the estimator of κ:

κ̂n(x , y) :=
Q∑

q=1

Q∑
r=1

π̂n
qr1[

∑q−1
k=1

α̂n
k
,
∑q

k=1
α̂n
k

)
(x)1

[
∑r−1

k=1
α̂n
k
,
∑r

k=1
α̂n
k

)
(y). (7)
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Method 4b: Incomplete observations (Z is unobserved and X (n) is observed)

+ graphon de-biasing

When Z = (Z1, ...,Zn) and X (n) = (X1, ...,Xn) are unobserved:

α̃q =
αqπ̄q

π̄
, for all q ∈ {1, . . .Q} ⇔ α̃ =

α� (πα)

αTπα
,

å Estimator α̂ for the vector α = (α1, . . . αQ) can be obtained from solving

the equation: (
α̂T π̂α̂

)
λ̂ = α̂� (π̂α̂).

It leads to solve the optimization problem

min
x∈S
‖
(
xT π̂x

)
λ̂− x � (π̂x)‖,

where S =
{
x = (x1, · · · , xQ) ∈ [0; 1]Q : x1 + ...+ xQ = 1

}
.
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Simulations
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Figure 5: Estimation by the complete data for a graph of n = 60 vertices with Q = 2

classes and parameters α1 = 2/3, π11 = 0.7, π12 = π21 = 0.4 and π22 = 0.8. 500 such

graphs are simulated and the empirical distributions of the estimators are represented

here with the true parameters in red line. (a): estimator of α, (b):estimator of π11.
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Simulations:

Complete SAEM De-biased De-biasing De-biasing

Parameters likelihood graphon & SAEM & alg. eq.

π11 3.52 10−4 5.25 10−3 3.52 10−4 3.54 10−4 3.54 10−4

π12 4.99 10−4 5.14 10−3 4.99 10−4 6.65 10−4 4.99 10−4

π22 1.41 10−3 1.45 10−2 1.41 10−3 1.42 10−3 1.41 10−3

α 7.01 10−3 3.80 10−2 6.80 10−4 5.31 10−4 4.51 10−3

Table 1: Mean square errors.
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Merci de votre attention !
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