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The motivation of this work is to discover the structure and the topology of a

hidden network: drug users, MSM,...

Figure 2: RDS on the HCV

Figure 1: Sexual contacts in a
2

population in Cubal population
= detect the identities of hidden individuals by exploring the graphs.

= Proposed methods: Respondent Driven Sampling (RDS)3,...

1. Clémencon et al. (2015)
2. Jauffret-Roustide et al. en cours (2020)
3. Respondent Driven Sampling: a new approach to the study of hidden populations; Heckathorn (1997)



Respondent Driven Sampling

There are ¢ coupons distributed at each turn of the interview.

® interviewed
e having coupon but have not been interviewed yet
e have been named but without coupon

Step 0 Step 1

Step 2 Step 3



Mathematical framework

At step n € N*:
e n = # individuals interviewed;

e A, = # individuals having coupons but have not
been interviewed yet;

e B, = # mentioned but have not get any coupon;

e N- (n+ A, + B,) = # vertices not-explored.

An+1 =A, — 1{An21} + Zni1 A c,
Bn+1 =B, + Hpy1 — Zn+1 N c

Let X, = (An, B,) be the RDS process to be studied.

When N tends to +0o, what is the behavior of (X,)n>1 ?



Exploration of sparse random graphs: Erdos-Rényi and SBM (1/2)

The renormalized process: X' = %(ALNtJ?BLNtJ)'
On the sparse supercritical Erdés-Rényi graphs ER(N,\/N), and more general,
on the sparse SBM: (A", BY) G (a, b).

Prgoriesof s e o

Figure 3: Comparing of X" with the solution of ODEs x; (dashed line) for ¢ = 3,
A=2.

* TCL associated to the convergence is established.



Exploration of a sparse random graphs: Erdds-Rényi and SBM (2/2)

* Study the size of graph explored in function of the number of coupons c.

Figure 4: Computation of the probability P(7 > ng|Ag = 1) of obtaining a sample of
size at least ng starting from 1, with ¢ varying from 1 to 10 (colors) and ng varying
between 1 and 100 (abscissa).



Random walk: RDS with c=1

% Denote X" = (X, ..., Xp) the explored nodes after n steps.

% H, = (Va, Es) the path of nodes visited by the random walk:

Vo = {X1, ..., X, } and E, = UlH{X;, X1}

* G, = G(X"™ H,, k): the subgraph discovered.



Stochastic Block Model (SBM) and schema of the observations on graphs

Stochastic Block Model*
T o~
? Q blocks (classes)
’/ \/° a = (aq, ..., aq) proportions of blocks
Tleo

7 = (Tgr)q,req1,q) Probabilities of

= connection

Y The observations:

e the random walk X(":
e the types Z = (Z4, ..., Z»);
e the adjacency matrix: Y = (Y})ije(1,...,n}-

% The parameter to estimate: 6 = (a, 7).

1. The graph of SBM is draw by Julien Chiquet and Catherine Matias.



The form of explored subgraph - Graphon

Graphon is a symmetric function: & : [0, 1]? +— [0, 1].

o

ot

™1

n=25

n =100 n— oo
% Associate to G, a graphon k:

ko (xy)— | S
* "Infinite” graphs:

e Erdos-Rényi k = p;

e SBM(Q,a,m): I = (h, ..., lg) a partition of [0,1] such that |/y| = ag. Then

Ifxely, y€l, k(x,y)=mgr.




Metric on the space of graphs, graphons

7 For a graph G of n vertices and F a graph of k < n vertices, we define:

(£, ) = M)

and for the graphon k:

t(F, k) 2/ H K(xi, xj)dx1 . . . dxk.
)

# Let (Fi)ien= be an enumeration of all the finite graphs. We define:

duus(G, ) = 3 %|t(F,-, G) — t(F., )|

i>1

Prop: When the size of graph G, tends to infinity, the SBM graph converges
to an SBM graphon for the distance dsp.



The random walk on a graphon

Xin

* X" = (X1,..,X,) a RW on &,
Xi € [0,1] with the transition kernel:

K(x,y)dy

P(x,dy) = /———————
(x, dy) fol K(x, v)dv X

X2

P ~j) = (X, X))
* X admits a stationary measure:

fol K(x, v)

midx) = fo fo u, v)du dv

*  G,= G(X™ H,, k) constructed by X" and the graphon x.
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The random walk on a dense SBM

For the SBM(Q, a, ), the I I M T ‘.
associated graphon is: A
Q @ -"J: ______________ ?__--
-3 S L0 L
q=1 r=1 “ SRR N v
1 4-1 q

Prop:

The random walk X on the graphon s admits unique invariant measure:

Lo @ (9, mera )1, (x)
() =— Jo. 5% dx = "lg = )L d. (1)
fO fO dU dv g=1 Zr:l TqrOqOur
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Limit of explored subgraph

Proposition’

lim dsub(Gmlirfl) = 0, a.s.
n— oo

where I is distribution function of m and ! is the generalized inverse of I' and

rr-1(x,y) = w(TH(x), T (y))

i 2 B - For Q =2:
I'(a
’ m | Ta) = (mua+m12(1 — a))a
i a1 ma? + 2mpa(l — a) + m2(l — a)?
()

w 1 is not known if X" are not observed.
= How can we estimate x from the subgraph G,?.

1. Dense graph limits under Respondent Driven Sampling; Athreya and Réllin. Annals of Applied Probability
(2016).
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Estimation methods

Method 1: Maximum likelihood

Nﬂ

—

Method 3: Maximum likelihood by SAEM

Method 2: De-biased graphon W

Nﬂ

ﬁncomplete observations

—

Method 4: De-biased graphon by VEM W
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Complete observations

% Suppose that X", Z, Yare observed:
N{ = number of nodes of type q

NJ7" = number of edges of type gr.

For the SBM without bais:

I N
L(Z, Yyiije X0y = — TG | |uq~’ x T1 7221 —mzz)*")
N N 1<i,j<n
i#j
* Without biases, the classical MLE:

q q<r g4 q
aclass _ Nn ~class __ Nn ~class __ 2Nn

e v AR ()&
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Method 1: Complete observations + ML

* With the biases:

L(Z YUv ,jEX( 9) M X H W;;J.Z_(l—ﬂzizj)l_y’y,
H Z —17Z;q%q 1<ij<n !
i#j

Proposition
The ML estimator § = (7, @) is solution of:

N & (N —12,-p)Tpq _ N _i (NF = 12,=p)Tpr .

a4 ZS’ 1 Tpg! Ogf ar o Zj’, | Foqr By

NIOT NG (NS —1g )@

Taq 1 — Tgq Zg)’:l %qq/aq’ ’

VL SR U et P O (o P
Tar 1 — Tgr 23’:1 Tqq Qg 23:1 Torq! Ol
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Method 2: Complete observation + de-biased graphon(1/2)

% By Athreya & Rollin: G, — rr-1, where k-1 =: k7 and 0 := (&, ).

The classical estimator for a, m (neglecting the biases):

In N!?
Ag = e
~n o NFTT ~n 2N79
7Tqr = W for q # r and 7qu = m
Xn(x,y) the graphon associated to (X’Z 7).
Proposition
(i) When n — +o0o,
nhm dsub(Gm Xn) =0. (3)
(ii) The limit Y, is then the biased graphon rir—1.
||m dsub(Xn, kr-1) = 0. 4

n——+
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Method 2: Complete observation + de-biased graphon(2/2)

% The 2-stage estimation:

1st step: Estimate 6 = (&, 7):

e 7" is a consistent estimator of 7:

e and )\j is a consistent estimator of a:

AT&”—WZM )~F(Ta) =3

r=1

-Q
,_;

2nd step: Correct the estimator 0 to obtain 0

A consistent estimator of aq is

q
ag=T" (O A =TT (O ). (5)
In the case Q = 2, an estimator for o is & = F;l(ﬁ).
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Method 3 (1/2): Incomplete observations + SAEM

Suppose that we observe only Yj and Z; are unknown.

% The incomplete likelihood:

I[; @
L(Yy;i,j€[1,n];6)= 1Zq”’—
e Zq,,—1 [,1_! H IZG 1 TqiqCq

X H YUvﬂ‘Cl/qJ
1<i,j<n
i#j
= The sum of g € {1, .., Q} is not tractable.
= Use the SAEM approach the MLE numerically.
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Method 3 (2/2): Incomplete observations + SAEM

Given 0% = (k=D 7(=1) " at the iteration k°™e:

Y Step 1: Choose the appropriate proposal Z;

We follow the variational approach of Daudin et al.': choose Z; by a
multinomal distribution of parameter 7,

H H b( Yi, 7rq€ (6)

Tiqg X —o5—
Zz 1Tqee Sy gy

% Step 2: Stochastic approximation, update the quantity:
9(0) = Q“0(0) + 5 (log £(Z™, 4,0) - @*7(6) )
% Step 3: Maximization:

0™ .= argmax Q™ (6).
0

1. Coupling a stochastic approximation version of EM with an MCMC procedure; Kuhn and Lavielle. ESAIM:ps
(2004).
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Method 4a: Incomplete observations (Z is unobserved and X (") is observed)

+ graphon de-biasing

Suppose that (Z, ..., Z,) are unobserved, but the positions (Xi, ..., X,) are
observed.

Step 1: Neglecting the sampling biases and using the variational EM algorithm
(VEM):

e Using EM algorithm to estimate (A, 7);

e Choosing the types Z; based on the information of X (.

Step 2: Estimate the cumulative distribution function I',, then deduce the
estimator a” of « and thus the estimator of «:

Q Q
Rn(x,y) ::Z Tar =9l an. 50 A,,)( )I[Zr P

e k=1 %k k=1 g 2je=1 e
q=1 r=

S0 (D)
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Method 4b: Incomplete observations (Z is unobserved and X(" is observed)

+ graphon de-biasing

When Z = (Z, ..., Z,) and X" = (X4, ..., X,) are unobserved:

= Qg ~ a0 (ra
g =——2, forallge{l,...Q} @a:#
T a’ra
= Estimator @ for the vector o = (a1, ... aq) can be obtained from solving

the equation:

AT ~~

(@'7a)x = a o (7a).

It leads to solve the optimization problem
. T~ N ~
N\ —
min || (x"Fx)A = x © (@),

where S = {x = (x1, -+ ,xq) € [0;1]9 : x1 + ... + xo = 1}
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Simulations

Densty

N=500 Bandwictn = 001938 N=500 Bandwict = 0003794

(a) (b)

Figure 5: Estimation by the complete data for a graph of n = 60 vertices with Q = 2
classes and parameters a; = 2/3, w11 = 0.7, 712 = 721 = 0.4 and 7 = 0.8. 500 such
graphs are simulated and the empirical distributions of the estimators are represented

here with the true parameters in red line. (a): estimator of «, (b):estimator of ;.
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Simulations:

Complete SAEM De-biased  De-biasing  De-biasing

Parameters | likelihood graphon & SAEM & alg. eq.
1 352107* 5.25107% | 352107% 354107* 3.54107*
12 49910°* 5141073 | 49910°* 6.6510°* 4.9910°*
T2 1411072 1451072 | 1.4110°% 14210°% 141103

a 7.01107% 3.80107%2 | 6.8010°* 5.31107* 4.5110°°

Table 1: Mean square errors.

23



Merci de votre attention |
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