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Non Euclidean data

Statistics have been developed for Euclidean data
X,...x €RY x=

In many applications, the data of interest do not belong to a vector space
e Geostatistics — spherical data
e Diffusion tensor images — SPD matrices

Character animations — rotation matrices

Images — histograms, probability distributions

Shapes of curves, surfaces — immersions, submanifolds

N )\: /”VJ? ) /?
DD \S P
-\ ) Q /)\\7,{)
Fletcher et al. 2004 Fletcher et al. 2006 Celledoni et al. 2016
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Riemannian geometric statistics
All these objects can be seen as elements of differentiable manifolds

e Open sets of vector spaces (SPD matrices, immersions)
e Embedded submanifolds (sphere)
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Riemannian geometric statistics

Riemannian geometric statistics

All these objects can be seen as elements of differentiable manifolds
e Open sets of vector spaces (SPD matrices, immersions)
e Embedded submanifolds (sphere)

To do statistics on these objects, one can use Riemannian geometry.
Euclidean scalar product — Riemannian metric

straight lines — geodesics
Euclidean distance — geodesic distance
addition / subtraction — Riemannian exponential / logarithm

x
vey—x v = Log,(y) N
x+v —  Exp.(v) y \ ( ' |

x—y = Logy 0 o

Euclidean space Manifold
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Riemannian geometric statistics

Riemannian geometry is a convenient framework to generalize usual statistical
notions and data processing algorithms.
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Riemannian geometric statistics

Riemannian geometry is a convenient framework to generalize usual statistical
notions and data processing algorithms.

n

Example : the Fréchet mean x,, = argmin— Zd(xi,y)z.
yeM =

In general, it is not unique
Unicity under certain conditions on injectivity radius of the data manifold

Or for Hadamard manifolds (geodesically complete and negative curvature)

In a Riemannian manifold, it can be computed via a gradient descent based
on the Riemannian Logarithm
1

n?:
1

=

n
F(y)= d(xi,y)?,  VyFoc—Y log,(x).
i=1

1
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Riemannian geometric statistics

Riemannian geometry is a convenient framework to generalize usual statistical
notions and data processing algorithms.

n

1
Example : the Fréchet mean x,, = argmin— Zd(xi,y)z.

yeM 2
e In general, it is not unique
e Unicity under certain conditions on injectivity radius of the data manifold
L)

Or for Hadamard manifolds (geodesically complete and negative curvature)

In a Riemannian manifold, it can be computed via a gradient descent based
on the Riemannian Logarithm
1

n:?:
1

=

n
F(y)= d(xi,y)?,  VyFoc—Y log,(x).
i=1

1

Knowledge of the data manifold geometry (existence of geodesics, curvature...)
is important to apply geometric statistics on it.
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Histogram data

Here we focus on histogram data.

e Each data point is a histogram of bounded values, e.g. measurements
corresponding to a patient

e Lack of a common representation space : a correspondence between
measurements across patients may not exist

e Bounded values : a beta distribution is fitted to each histogram
e |dea : do geometric statistics on dataset of beta distributions
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Information geometry and the Fisher-Rao distance

e Information geometry : geometric approach to parametric statistics based on
the Fisher information. Given a parametric model {pgu,0 € O},

1(6) =Eg[delo(X) - dolo(X)'], Lo =logpe.
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Information geometry and the Fisher-Rao distance

e Information geometry : geometric approach to parametric statistics based on
the Fisher information. Given a parametric model {pgu,0 € O},

1(8) = Eg[dolo(X) - delo(X)'], Lo = logps.
e Rao (1945) : the Fisher information can be used to define a Riemannian
metric on the parameter space 0, i.e. a local scalar product on each tangent

space
(u,v)o = ul(B)v, u,v € Ty® ~R.
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Information geometry of beta distributions

Information geometry and the Fisher-Rao distance

e Information geometry : geometric approach to parametric statistics based on
the Fisher information. Given a parametric model {pgu,0 € O},
1(8) = Eq[delo(X) - dele(X)'], Lo =logpe.
e Rao (1945) : the Fisher information can be used to define a Riemannian

metric on the parameter space 0, i.e. a local scalar product on each tangent
space

(u,v)o = ul(B)v, u,v € Ty® ~R.

e The induced geodesic distance is called the Fisher-Rao distance

1
dist(00,0,) =  inf  £(8) wh ee:/ 0 (1) [londlt.
OO = ng (@) whero €9)= [ 160
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Information geometry and the Fisher-Rao distance

e Information geometry : geometric approach to parametric statistics based on
the Fisher information. Given a parametric model {pgu,0 € O},

1(9) =Eq [aege(X) : aefe (X)t], fe = logpe.

e Rao (1945) : the Fisher information can be used to define a Riemannian
metric on the parameter space 0, i.e. a local scalar product on each tangent
space

(u,v)o = ul(0)v, u,ve To® ~R%.

e The induced geodesic distance is called the Fisher-Rao distance

1
dist(00,0,) =  inf  £(8) wh ee:/ 0 (1) [londlt.
OO = ng (@) whero €9)= [ 160

e The Fisher-Rao metric is invariant to
— diffeomorphic parametrization change @ : 6 — 6.
— transformation of the statistical model by a sufficient statistic (Chentsov).
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Information geometry and the Fisher-Rao distance

e Geodesics are local minimizers of the geodesic distance and curves ¢ — ()
with zero acceleration
Vit=0

where V is the Levi-Civita connection and allows to take "intrinsic" derivatives
of vector fields — geodesics are solutions of an ODE.
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Information geometry and the Fisher-Rao distance

e Geodesics are local minimizers of the geodesic distance and curves ¢ — ()
with zero acceleration

Vit=0
where V is the Levi-Civita connection and allows to take "intrinsic" derivatives
of vector fields — geodesics are solutions of an ODE.

o |f the manifold is complete, any two points can be linked by a minimizing
geodesic (Hopf-Rinov theorem), i.e.

dist(09,01) = £(y) with 7y st Vy’YZO
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Information geometry and the Fisher-Rao distance

e Geodesics are local minimizers of the geodesic distance and curves ¢ — ()
with zero acceleration
Vir=0
where V is the Levi-Civita connection and allows to take "intrinsic" derivatives
of vector fields — geodesics are solutions of an ODE.

o |f the manifold is complete, any two points can be linked by a minimizing
geodesic (Hopf-Rinov theorem), i.e.

dist(09,01) = £(y) with 7y st Vy’YZO

e |f the manifold has negative curvature and is simply connected, the
minimizing geodesic is unique (Cartan-Hadamard theorem).
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Examples
e Univariate normal distributions (Atkinson & Mitchell 1981)

Po = N (u,0), then ® = R x R’ equipped with the Fisher-Rao metric is the
Poincaré half-plane. Geodesics are half-circles orthogonal to the x-axis.

1538 2
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Information geometry of beta distributions

Examples

e Univariate normal distributions (Atkinson & Mitchell 1981)
Po = N (u,0), then ® = R x R’ equipped with the Fisher-Rao metric is the
Poincaré half-plane. Geodesics are half-circles orthogonal to the x-axis.
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SMAI 2021

Alice Le Brigant Classifying histograms with information geometry

12/31



Examples

e Univariate normal distributions (Atkinson & Mitchell 1981)
Po = N (u,0), then ® = R x R’ equipped with the Fisher-Rao metric is the
Poincaré half-plane. Geodesics are half-circles orthogonal to the x-axis.

H1 H2

e Others :
— Special cases of multivariate normal distributions (Atkinson & Mitchell 1981,
Skovgaard 1984)
— Gamma distributions (Lauritzen 1987, Arwini & Dodsen 2008)
— Power inverse Gaussian distributions (Zhang, Sun, Zhong, 2007)
— Von Mises-Fisher and location-scale models (Said et al. 2019)
— Generalized Gamma distributions (Rebbah, Nicol, Puechmorel 2019)
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Fisher-Rao metric on beta distributions

Parameter space is ® = {(x,y),x > 0,y > 0}.

The beta p.d.f. of parameter 6 € ® is

pou) = llq(();iﬂ)ux’l(l —u)~ !, Vuelo,1].

The Fisher-Rao metric is defined for any v = (vy,vy) € T(,,)® by

V]I = W' (e)vi + W (0)vy =¥ (e 9) (v +0y)%,

where y =T"/T" and ' are the digamma and trigamma functions.

Parameter space ® + Fisher-Rao metric = beta manifold.
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Fisher-Rao metric on beta distributions

e The geodesics ¢ — (x(),y(¢)) can be found numerically by solving the ODE

X—I—a(x,y)fcz—i—b(x, )iy + c(x, )y =0
4 a(y,x)i* +b(y,x)iy + c(y,x)i* =0

with
a(x,y) = VW () — W' ()Y (x+3) - )y (x+)
’ 2d(x,y) ’
v (x+y)v' ()
b(x,y) = — W )
cey) = YOV EHY) VO (x+y)
’ 2d(x,y) ’
d(x,y) =¥ (@)W () =¥ (x+3) (W (x) + ¥ (7))

e Initial value problem : fix x(0),y(0),%(0),y(0)
Boundary value problem : fix x(0),y(0),x(1),y(1).
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Fisher-Rao metric on beta distributions

° Z % o
Euclidean | Fisher-Rao
dist((1,10), (10, 1)) 12,7 42
dist((1,10), (10,100)) | 99,4 18
Classifying histograms with information geometry SMAI 2021
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Fisher-Rao metric on beta distributions

Computation of geodesics allows to compute
e distances
e interpolations
e barycenters
Questions :
e Are the geodesics always defined ? Unique ?
e What is the curvature of the beta manifold ?
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Gauss curvature of a surface S C R3

e The normal to S defines the Gauss map N : § — R3.

o The shape operator ¥,(v) = —dN,(v) is symmetric and defines the second
fundamental form

I, (v) = (Z,(v),v).
It is the signed curvature of the normal section of S at p in direction v.

e The principal curvatures ki and k;, are the extremal eigenvalues of the shape
operator ¥,

k1 +ky
2

e Mean (extrinsic) curvature : vs  Gauss (intrinsic) curvature : kiky

Normal section at p along v
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Sectional curvature of a Riemannian manifold M

e Sectional curvature of a plane 6 C T,M spanned by vectors e, e;

(R(er,en)er,e2)
(e1,e1)(e2,€2) — (e1,€2)

K(o)=K(ej,e2) = 5

where R(U, V)W = VyVyW —VyVyW — V| W is the curvature tensor.
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_lInformaingeomelryof betadistibutons |
Sectional curvature of a Riemannian manifold M

e Sectional curvature of a plane 6 C T,M spanned by vectors e, e;

(R(er,en)er,e2)

K(c) =K(e1,e2) = (e1,e1)(ea,e2) — (e1,e2)?

where R(U, V)W = VyVyW —VyVyW — V| W is the curvature tensor.

e When M is a hypersurface in M, then the Gauss map p — N(p) is defined

and
(Z(U), U)(E(V),V) - (£(U), V)
KUV =KUY ===y
where Zp(v) = —V,Nis the shape operator.
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_lInformaingeomelryof betadistibutons |
Sectional curvature of a Riemannian manifold M

e Sectional curvature of a plane 6 C T,M spanned by vectors e, e;

(R(er,en)er,e2)

K(c) =K(e1,e2) = (e1,e1)(ea,e2) — (e1,e2)?

where R(U, V)W = VyVyW —VyVyW — V| W is the curvature tensor.

e When M is a hypersurface in M, then the Gauss map p — N(p) is defined

and
(Z(U), U)(E(V),V) - (£(U), V)
KUV =KUY ===y
where Zp(v) = —V,Nis the shape operator.

e If K =0 and for an o.n.b. of eigenvectors e1,...,e, of Y, associated to the
eigenvalues ki, ...k, (principal curvatures), we get

K(e,', ej) = kikj.
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Sectional curvature of the beta manifold

e Only one sectional curvature K(0) at each point 8 = (x,y) (dim = 2)
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Sectional curvature of the beta manifold

e Only one sectional curvature K(0) at each point 8 = (x,y) (dim = 2)

e At point (x,y), the sectional curvature can be computed from coordinate
vectors ey, ey :

K(x,y) = V(W' )y (x+y) <\If’(x) V() Y(x+y) >

4d(x,y)? v(x)  w'(y) w(x+y)

where d(x,y) is the determinant of the metric matrix.
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Sectional curvature of the beta manifold

e Only one sectional curvature K(0) at each point 8 = (x,y) (dim = 2)

e At point (x,y), the sectional curvature can be computed from coordinate
vectors ey, ey :

K(x,y) = Y )y )y (x+y) <\lf’(x) V() Y(x+y) >

4d(x,y)? V(X)) ()
where d(x,y) is the determinant of the metric matrix.

e Y’ <0 and (Yang, 2017) y'/y" is subadditive = K <0
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Sectional curvature of the beta manifold

e Only one sectional curvature K(0) at each point 8 = (x,y) (dim = 2)

e At point (x,y), the sectional curvature can be computed from coordinate
vectors ey, ey :

K(x,y) = Y )y )y (x+y) <\lf’(x) V() Y(x+y) >

4d(x,y)? V(X)) ()
where d(x,y) is the determinant of the metric matrix.

e Y’ <0 and (Yang, 2017) y'/y" is subadditive = K <0

Theorem
The beta manifold has everywhere negative sectional curvature.
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Sectional curvature of the beta manifold

e Conjecture : K > —1/2
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Sectional curvature of the beta manifold

e Conjecture : K > —1/2

e One can show that the beta manifold is complete, and simply connected, so it
is a Hadamard manifold
— existence and unicity of minimizing geodesics
— existence and unicity of the Fréchet mean.
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Sectional curvature of the beta manifold

e Conjecture : K > —1/2

e One can show that the beta manifold is complete, and simply connected, so it
is a Hadamard manifold
— existence and unicity of minimizing geodesics
— existence and unicity of the Fréchet mean.

e Algorithms based on distance and barycenter computations are well defined
on the beta manifold.
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Histograms of medical data

Example 1 : Area strain (AS) of the right ventricle

e Goal : observe local stretching of the area of the right ventricle (RV) to assess
cardiac function

e Data : area change of each triangular cell of a 3d mesh of the RV
e This gives a distribution of n values in [p, ¢] with constants p, g.
e Renormalize to obtain values in [0, 1].

Example 2 : Cortical thickness (CTh) maps
e Goal : measure brain atrophy for the early diagnosis of Alzheimer’s disease

e Data : n cortical thickness (CTh) MRI measures along the whole cortical
ribbon

e Each measure is made for a Tmm voxel

o Normalize values by maximal value among population
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Methodology

e Each dataset is divided in 2 classes : diseased and controls.

e 1 patient

d

1 histogram <« beta parameters (x,y)

e We perform both supervised (KNN, supervised Kmeans) and unsupervised
(Kmeans) classification in the following representation spaces :

80

60

40

20

Alice Le Brigant

beta parameter space + Fisher-Rao metric
beta parameter space + Euclidean metric
original data space + Euclidean metric (only for AS)

2-dimensional space obtained by PCA + Euclidean metric (only for AS)

75

5.0

. 0.0

-2.5

-5.0

25{ o

20 40 60 80

AS beta representation

AS PCA representation

10

Classifying histograms with information geometry

14 20

12

CTh beta representation

18
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Classifying histograms of medical data

Results
CTh data v

Mean accuracy
°
3
®

0.76 4
0.744
0.724
—— Beta Riemannian
0.70 { —— Beta Euclidean

4

Mean accuracy of KNN on 5-fold cross-validation

8 10

12 14 16

Number of neighbors

Beta
Euclidean Riemannian
KNN | 0.77 (0.05) 0.79 (0.04)
SKM | 0.66 (0.10) 0.80 (0.05)
KM 0.61 0.82

Classification mean (and standard deviation) accuracy on 5-fold cross-validation
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Classifying histograms of medical data

Results

AS data

Mean accuracy

'
1
|
|
|
|
0.85 - : ——————
I |
|
I T
[
o i
080 ! !
1 1
' 1
1
1
1
0.75
—— Beta Riemannian
—— Beta Euclidean
070 —— PCAEuclidean — ~'~._ D
== original Euclidean N
4 6 8 10 12 14 16 18 20

Number of neighbors

Mean accuracy of KNN on 5-fold cross-validation

Original PCA Beta
Euclidean Euclidean Euclidean Riemannian
KNN | 0.81(0.05) | 0.67(0.32) | 0.77 (0.09) 0.83 (0.05)
SKM | 0.85 (0.03) | 0.72(0.28) | 0.66 (0.06) 0.81 (0.06)
KM 0.84 0.84 0.60 0.80

Classification mean (and standard deviation) accuracy on 5-fold cross-validation
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Dirichlet distributions

e Dirichlet distributions are probability distributions on the (n — 1)-dimensional
probability simplex

n
An:{q: (ql,“'vqn) ER"? qu: 17611'2071': 17"'7’1}'
i=1
e Parameter space is ® = {(x1,...,X,), X,...,X%, >0} and p.d.f. is

F(X1+...+Xn) x—1 q)fn*I
g

fulglxi,...ox,) = mql

(x1,x2,x3)=(0.1,0.1,0.1) (x1,x2,x3)=(1,1,1) (x1,x2,x3)=(1,5,10)
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The Dirichlet manifold

/!

Notations : f =

The Dirichlet manifold is ® = (R’ )" equipped with the Fisher-Rao metric

dx? . 2 (dxy 44 dx,)?

Fo) T ) T G )

ds* =

The sectional curvature of the plane spanned by coordinate vectors ¢;, e; is

F(x;)F(x;)F (L xr)
(F(Xxe) — Xf (xx)

F < 0 is subadditive = K;; < 0 everywhere.

Kij(x) = ; 5 (F(xi) +F(x) = F(2x))

But in dimension n > 2, there are other sectional curvatures to consider !
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The Dirichlet manifold

There is an isometric embedding

d:M— L
(15w 20) = (M), M) M (e + -+ x))

with Ry =R, :/x dr

n: R4 n(x) )
between M and the (n+ 1)-dimensional flat Minkowski space L"*! = (R"*! ds?),
where

ds? =dy} 4 ... +dy2 —dy2.,.

Proposition

S = ®(M) is a codimension 1 submanifold (hypersurface) of L™ given by the
graph of

Yn+1 :ﬂ(ﬁ(y1)+~-+§(Yn))a yi >0,

where & =m~!. On this submanifold the metric is positive-definite and thus
Riemannian.
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Curvature of the Dirichlet manifold

Theorem
The Dirichlet manifold has everywhere negative sectional curvature. J

Elements of proof :
e A basis of tangent vectors of T, is defined by

b S oy

€i FoEOme) dnr? LT

By, R

e The shape operator of S = ®(M) has components
I e _ I Yo )
O Z/ 700 (f (xz) i~ 0 f(xz)f(x]) .
e The second fundamental form II(U, V) = (—VyN, V) is positive-definite.
e The sectional curvature is, for U, V tangent to the submanifold

(U, NIV, V) —-1I(U,V)?
<U7 U><V7 V>—<U, V>2 ’

<V€iN7ej>

K(U,V)=K(U,V) -

The result follows from K = 0 and the Cauchy-Schwarz inequality.
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Conclusion

Future work :
e Bigger datasets
e Numerical efficiency

The code is available in Python library geomstats : computing and statistics on

manifolds : https://github.com/geomstats/geomstats

Thank you for your attention!
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