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Introduction to control theory.

{
dx
dt = f (x , u), t ∈ (0,T )
x(0) = x0

(1)

where, at time t,
I x(t) ∈ Rn: state of this system,
I u(t) ∈ R: control.

Definition
The system is said to be controllable at time T if for all initial
conditions x0 ∈ Rn, for all targets xf ∈ Rn, there exists a control
u ∈ L∞(0,T ) such that x(T ) = xf where x is the solution of (2)
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{
dx
dt = f (x , u), t ∈ (0,T )
x(0) = x0

(2)

where, at time t,
I x(t) ∈ Rn: state of this system,
I u(t) ∈ R: control.

Definition (E-STLC)
Let (ET , ‖ · ‖ET ) be a family of normed vector spaces of scalar
functions defined on [0,T ] for T > 0. The system is said to be E-
controllable at time T if for all ε > 0, for all initial conditions
x0 ∈ Rn, for all targets xf ∈ Rn, there exists a control u ∈ ET with
‖u‖ET < ε such that x(T ) = xf where x is the solution of (2)



When the linearized system is not controllable ?

Example 1: {
ẋ1 = u,
ẋ2 = x2

1 .

{
ẏ1 = u,
ẏ2 = 0,

I Failure of the linearization principle:

for all control u, y2(T ) = y0.

I For the nonlinear system:

x2(T ) =
∫ T

0
u1(t)2dt > 0

→ no controllability for the nonlinear system.
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ẋ1 = u,
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I For the nonlinear system: (x1(T ), x2(T )) = (a, b)T iff{
u1(T ) = a,∫ T
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When the linearized system is not controllable ?

Example 3:
ẋ1 = u,
ẋ2 = x1,
ẋ3 = x3

1 + x2
2 .


x1 = u1,
x2 = u2,

x3(T ) =
∫ T

0
(
u1(t)3 + u2(t)2) dt.

First option. The quadratic term wins when ‖u′‖L∞(0,T ) small∫ T

0
u3

1(t)dt = −
∫ T

0
u2(t)2u(t)u1(t)dt =

∫ T

0
u2(t)2u′(t)dt

Then,

x3(T ) >
(
1− ‖u′‖L∞(0,T )

) ∫ T

0
u2(t)2dt

> 0

→ no controllability.
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When the linearized system is not controllable ?
Second option. The cubic term wins for controls of the form:

uλ(t) =
√
λφ′′

( t
λ

)
.

Size of the control:

‖uλ‖L∞(0,T ) ≈
√
λ, ‖u′λ‖L∞(0,T ) ≈

1√
λ
.

Then,

x3(T ) =
∫ T

0
u1(t)3dt +

∫ T

0
u2(t)2dt

= λ
11
2

∫ 1

0
φ′(θ)3dθ + λ6

∫ 1

0
φ(θ)2dθ

= a + o(a)

with
∫ 1

0 φ
′(θ)3dθ = sign(a) and λ = |a| 2

11 .
→ controllability



When the linearized system is not controllable ?
Second option. The cubic term wins for controls of the form:

uλ(t) = λαφ′′
( t
λ

)
.

Size of the control:

‖uλ‖L∞(0,T ) ≈ λα, ‖u′λ‖L∞(0,T ) ≈ λα−1.

Then,

x3(T ) =
∫ T

0
u1(t)3dt +

∫ T

0
u2(t)2dt

= λ3α+4
∫ 1

0
φ′(θ)3dθ + λ2α+5

∫ 1

0
φ(θ)2dθ

= a + o(a)

with α < 1,
∫ 1

0 φ
′(θ)3dθ = sign(a) and λ = |a|1/3α+4.

→ controllability



Goal

On the Schrödinger equation,

I Understand how the linearized test work
I When it fails,

1. When controls are small is regular space, the quadratic term
drift induces a drift denying controllability.

In finite dimension: Beauchard and Marbach. In infinite
dimension: Beauchard and Marbach for a nonlinear parabolic
equation; Coron, Koenig and Nguyen for a KdV equation.

2. When controls are big in regular space, the cubic term allows
us to gain back controllability.
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Schrödinger equation.

Let T > 0.{
i∂tψ(t, x) = −∂2

xψ(t, x)− u(t)µ(x)ψ(t, x), (t, x) ∈ (0,T )× (0, 1),
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0,T ).

Bilinear control system
I the state: ψ, such that ‖ψ(t)‖L2(0,1) = 1 for all time,
I µ : (0, 1)→ R dipolar moment of the quantum particle
I and u : (0,T )→ R denotes a scalar control.



Question.

{
i∂tψ = −∂2

xψ − u(t)µ(x)ψ, (t, x) ∈ (0,T )× (0, 1),
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0,T ). (3)

Definition (Small-time controllability around the ground state.)
Let (ET , ‖ · ‖ET ) be a family of normed vector spaces of scalar
functions defined on [0,T ], for T > 0. The system (3) is said to
be E-STLC around the ground state if:

∃s ∈ N, ∀T > 0, ∀ε > 0, ∃δ > 0,

∀ψf ∈ S, ‖ψf − ψ1(T )‖Hs
(0)(0,1) < δ, ∃u ∈ L2(0,T ) ∩ ET ,

‖u‖ET < ε, ψ(0) = ϕ1, ψ(T ) = ψf .



When the linear system is controllable.

i∂tψ(t, x) = −∂2
xψ(t, x)−u(t)µ(x)ψ(t, x), ψ(t, 0) = ψ(t, 1) = 0.

Theorem (Beauchard and Laurent, 2010)
Let T > 0 and µ ∈ H3((0, 1),R) be such that

∃c > 0 such that , ∀j ∈ N∗, |〈µϕ1, ϕj〉| ≥
c
j3 .

Then, the system is controllable in S ∩ H3
(0), locally around the

ground state in arbitrary time T > 0 with controls in L2((0,T ),R).

I Controllability of a linearized system : moment problem.
I Local controllability of the non-linear system : inverse

mapping theorem to the end-point map.



Moment method.

First-order: i∂tΨ = −∂2
x Ψ− u(t)µ(x)ψ1

Explicit solution:

Ψ(T ) = i
+∞∑
j=1

(
〈µϕ1, ϕj〉

∫ T

0
u(t)ei(λj−λ1)tdt

)
ϕje−iλj T , t ∈ (0,T ).

I If 〈µϕ1, ϕK 〉 = 0, then

〈Ψ(t), ϕK 〉 ≡ 0.

I If for all j ∈ N∗, 〈µϕ1, ϕj〉 6= 0, the equality Ψ(T ) = ψf is
equivalent to∫ T

0
u(t)ei(λj−λ1)tdt = −i 〈ψf , ϕj〉

〈µϕ1, ϕj〉
eiλj T , ∀j ∈ N∗.



Theorem (The n-th quadratic obstruction.)
Let n ∈ N and µ ∈ H2n+1((0, 1),R) satisfying 〈µϕ1, ϕK 〉 = 0 for
some K ∈ N∗ + (Hyp)n. The Schrödinger equation is not
H2n−3-STLC.

More precisely, there exists a time T ∗ > 0 such that for any final
time T ∈ (0,T ), there exists a bound η > 0 such that for all
controls u ∈ H2n−3(0,T ) with ‖u‖H2n−3(0,T ) ≤ η, if the solution ψ
of Schrödinger with initial data ϕ1 satisfied

〈ψ(T ), ϕjp〉 = 0 for j1, . . . , jn s.t. 〈µϕ1, ϕjp〉 6= 0

then

Im
(
〈ψ(T ), ϕKe−iλ1T 〉

)
≥ αn

K

∫ T

0
un(t)2dt with αn

K > 0

with αn
K ≈ 〈[[f0, [f0, . . . , [f0, f1]]︸ ︷︷ ︸

length (n,1)

, [f0, [f0, [f0, . . . , [f0, f1]]︸ ︷︷ ︸
length (n+1,1)

] (ϕ1) , ϕK 〉.
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Idea of proof

Power series expansion: ψ ≈ ψ1 + Ψ + ξ.

I Linear term:
〈Ψ(T ), ϕK 〉 = 0.

I Quadratic term:

Im〈ξ(T ), ϕK 〉 ≥ 2αn
K

∫ T

0
un(t)2dt.

I Remainder:

〈(ψ − ψ1 −Ψ− ξ) (T ), ϕK 〉 = O
(
‖u1‖3L2(0,T )

)
= o

(∫ T

0
un(t)2dt

)

when ‖u‖H2n−3(0,T ) → 0.



The next step

I The system is not H2n−3-STLC.

I What happen for controls less regular ? Can the cubic term
prevails on the quadratic term and thus allows to gain back
controllability lost at the linear level, despite a drift ?

Conjecture: the system is H2n−4-STLC.



Toward a positive result

I On Span(ϕK ), no controllability at the linear level.
I On H = Span(ϕK )⊥, controllability at the linear level and

thus at the non linear level.
Step 1: On [0,T1], long ϕK ,

〈ψ(T1), ϕK 〉 = 〈ψf , ϕK 〉+ o(ψf ),

Step 2: On [T1,T2], on H,

PHψ(T2) = PHψf .

It remains to prove that

〈ψ(T2), ϕK 〉 − 〈ψ(T1), ϕK 〉 = o(ψf ).

→ need simultaneous estimates on the control.


