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Introduction to control theory.

& = f(x,u), te(0,T) 2)
x(0) = xo
where, at time t,
» x(t) € R": state of this system,
» u(t) € R: control.

Definition (E-STLC)

Let (ET,|| - ||e;) be a family of normed vector spaces of scalar
functions defined on [0, T] for T > 0. The system is said to be E-
controllable at time T if for all € > 0, for all initial conditions

xp € R”, for all targets x € R”, there exists a control u € E+ with
|lul|g, < e such that x(T) = x¢ where x is the solution of (2)
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» Failure of the linearization principle:
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for all control u, y»(T) = yo.

» For the nonlinear system:

X2(T) = /OT U1(t)2dt >0

— no controllability for the nonlinear system.
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When the linearized system is not controllable ?

Example 2:
X1 =u, Y1=u,
X =, y2 =0,
» Failure of the linearization principle:
for all control u, y»(T) = yo.
» For the nonlinear system: (x1(T),x2(T)) = (a, b) " iff

ul(T) = a,
{ Jo u(t)3dt = b,

— controllability for the nonlinear system.
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X3 = X3 + x5. x3(T) = foT (u1(t)3 + wa(t)?) dt.



When the linearized system is not controllable ?

Example 3:
Xll = u, X1 = U1,
)('2 = X17 X2 - U2,
X3 = X3 + x5. x3(T) = foT (ur(t)® + ua(£)?) dt.

First option. The quadratic term wins when [|u/[| (o 1) small

T T T
/0 uf(t)dt:—/o uz(t)2u(t)u1(t)dt:/o un(£)2 (£)dt
Then,

/ T 2
xo(T) > (1= W lmory) [ (0

>0

— no controllability.
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Second option. The cubic term wins for controls of the form:
t
un(t) = Vg <A> .

Size of the control:

1
luallieo, 1) = VA, |[thlli=(0,1) = —=-

VA
Then,

with [ ¢/(0)3d0 = sign(a) and X\ = |a| 11

— controllability



When the linearized system is not controllable ?

Second option. The cubic term wins for controls of the form:

ur(t) = A" (;) .

lurllioeo,my = A% [lud]lieo,my = A%

Size of the control:

Then,
x3(T) = /T ur(t)3dt + /T up(t)2dt

1
)\3a+4/ ¢ d0+)\2a+5/ ¢(9)2d9
0
=a+ o

with a < 1, [ ¢/(6)°d6 = sign(a) and X = [a['/3*+4.

— controllability
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1. When controls are small is regular space, the quadratic term
drift induces a drift denying controllability.

In finite dimension: Beauchard and Marbach. In infinite
dimension: Beauchard and Marbach for a nonlinear parabolic
equation; Coron, Koenig and Nguyen for a KdV equation.



Goal

On the Schrédinger equation,

» Understand how the linearized test work
» When it fails,

1. When controls are small is regular space, the quadratic term
drift induces a drift denying controllability.

In finite dimension: Beauchard and Marbach. In infinite
dimension: Beauchard and Marbach for a nonlinear parabolic
equation; Coron, Koenig and Nguyen for a KdV equation.

2. When controls are big in regular space, the cubic term allows
us to gain back controllability.



Schrodinger equation.

Let T > 0.

{ iatw(tvx) = —63¢(t,x) - u(t)ﬂ(x)w(t7x)v (t,X) S (07 T) X (07 1)7
P(t,0) =(t,1)=0, te(0,T).

Bilinear control system
> the state: ¢, such that [|9(t)||2(0,1) = 1 for all time,
» 1 :(0,1) — R dipolar moment of the quantum particle
» and v : (0, T) — R denotes a scalar control.



Question.

{ i8t¢ = —3§¢ - U(f)M(XW’ (t,X) S (07 T) X (07 1)7 (3)
¥(t,0) =(t,1)=0, te€(0,T).

Definition (Small-time controllability around the ground state.)

Let (ET,| - ||e;) be a family of normed vector spaces of scalar
functions defined on [0, T], for T > 0. The system (3) is said to
be E-STLC around the ground state if:

dseN, VT >0, Ve>0, 3J>0,
Vo € S, e — ¥a(T)llg, 01) <0, Fu € [2(0, T)N E7,
HUHET <eg, Qﬁ(O):ng, ¢(T):¢f



When the linear system is controllable.

i0e(t, x) = —02(t, x)—u(t)u(x)p(t, x),  ¥(t,0) = ¥(t,1) = 0.

Theorem (Beauchard and Laurent, 2010)
Let T >0 and pn € H3((0,1),R) be such that

Jc > 0 such that ,Vj € N*, [(up1, ¢5)| > %
J

Then, the system is controllable in & N H(30), locally around the

ground state in arbitrary time T > 0 with controls in L((0, T),?).

» Controllability of a linearized system : moment problem.

» Local controllability of the non-linear system : inverse
mapping theorem to the end-point map.



Moment method.

First-order: i0,V = —92V — u(t)u(x)y1
Explicit solution:

T .
= ’Z < 11, 0 /0 U(t)e’“f”l)tdt> pie ™7, te(0,T),

» If (1, pk) =0, then
(W(1), pk) = 0.

> If for all j € N*, (1, ¢j) # 0, the equality W(T) = ¢ is
equivalent to

T .
/ u(t)ef()\j—)\l)tdt - —j <1/)f7 90J> ei)\jT, VJ e N*.
0 (11, 9))



Theorem (The n-th quadratic obstruction.)

Let n € N and p € H?>"1((0,1), R) satisfying (up1, pk) = 0 for
some K € N* + (Hyp),. The Schrédinger equation is not
H?"=3-STLC.

More precisely, there exists a time T* > 0 such that for any final
time T € (0, T), there exists a bound 1 > 0 such that for all
controls u € H?>'=3(0, T) with |ull 2030, 7) < 0, if the solution v
of Schrédinger with initial data 1 satisfied

(W(T), ) =0 forju,....jn s.t. {pp1,9j,) #0

, T
Im (<T/1(T),90KG_IA1T>> > a”K/O un(t)?dt  with ok >0



Theorem (The n-th quadratic obstruction.)

Let n € N and p € H?>"1((0,1), R) satisfying (up1, pk) = 0 for
some K € N* + (Hyp),. The Schrédinger equation is not
H?"=3-STLC.

More precisely, there exists a time T* > 0 such that for any final
time T € (0, T), there exists a bound 1 > 0 such that for all
controls u € H?>'=3(0, T) with |ull 2030, 7) < 0, if the solution v
of Schrédinger with initial data 1 satisfied

(W(T), ) =0 forju,....jn s.t. {pp1,9j,) #0

then

_ T
Im ((1/1(7'),90/(6_')‘17-» > a”K/O un(t)?dt  with aj >0

with Oé';( ~ <[[fba [fb7 LR [ﬁ)? fl]]7 [fbv [fb7 [fba ) [fbv fl]]] (()01) ; (PK>'
length (n,1) length (n+1,1)




|dea of proof

Power series expansion: 9 ~ 1 + V + £.

» Linear term:
<\U(T), (PK> =0.
» Quadratic term:

-
Im(&(T), ox) = 2a”K/ un ()2t
0
» Remainder:

(@ =11 =V =€) (T). o) = O (|20

—0 (/OT un(t)2dt>

when ‘|U“H2n73(07‘r) — 0.



The next step

» The system is not H>"“3-STLC.

» What happen for controls less regular 7 Can the cubic term
prevails on the quadratic term and thus allows to gain back
controllability lost at the linear level, despite a drift ?

Conjecture: the system is H*"~*-STLC.



Toward a positive result

» On Span(pk), no controllability at the linear level.

» On H = Span(pk)™*, controllability at the linear level and
thus at the non linear level.

Step 1: On [0, T1], long ¢k,
(W(T1), oK) = (¥r, oK) + o(¥r),
Step 2: On [Ty, T2, on H,
Pri(T2) = Pripr.
It remains to prove that

(¥(T2), oK) — (U(T1), k) = o(tr).

— need simultaneous estimates on the control.



