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Framework and contributions

• Discrete time and discrete space mean field games [GMS10]

• Potential (or variational) structure [LL06]

• Interactions through congestion γ or price P mechanism allowing hard or soft
constraints

Soft Hard
F γ = ∇F [LL06] γ ∈ ∂F [San12]
φ P = ∇φ [BHP21] P ∈ ∂φ [GS20]

• Numerical methods : ADMM, ADMG, proximal primal-dual methods (see [AL20] for a
survey)
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Mean field game system



(i)

 u(t, x) = inf
ρ∈∆(S)

∑
y∈S

ρ(y)
(

cγ,P (t, x , y , ρ) + u(t + 1, y)
)
,

u(T , x) = γ(T , x),

(ii) π(t, x , ·) ∈ arg min
ρ∈∆(S)

∑
y∈S

ρ(y)
(

cγ,P (t, x , y , ρ) + u(t + 1, y)
)
,

(iii)

 m(t + 1, x) =
∑
y∈S

m(t, y)π(t, y , x),

m(0, x) = m0(x),

(iv) γ(s, ·) ∈ ∂F (s,m(s, ·)),

(v) P(t) ∈ ∂φ
(

t,Q[m, π](t)
)
.

(MFG)
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Interpretation: individual player minimization problem
For any (γ,P) ∈ U , we define the individual cost c : T × S × S ×∆(S)→ R,

cγ,P (t, x , y , ρ) = `(t, x , ρ) + γ(t, x) + α(t, x , y)P(t).

Given (m, π) ∈ R, we denote the aggregated demand

Q[m, π](t) =
∑

(x,y)∈S2

m(t, x)π(t, x , y)α(t, x , y).

The dynamical system of each agent is a Markov chain (Xπ
s )s∈T̄ controlled by π ∈ ∆, with

initial distribution m0: for any (t, x , y) ∈ T × S2,

P (Xπ
t+1 = y |Xπ

t = x) = π(t, x , y), P(Xπ
0 = x) = m0(x).

Given the coupling terms (γ,P) ∈ U , the individual control problem is

inf
π∈∆

Jγ,P (π) := E
(∑

t∈T

cγ,P (t,Xπ
t ,Xπ

t+1, π(t,Xπ
t )) + γ(T ,Xπ

T )
)
.

The mean field game problem is given by:

π ∈ arg min
ρ∈∆

Jγ,P (ρ), γ ∈ ∂F [mπ], P ∈ ∂φ[Q[mπ, π]].
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Primal and dual potential problems

• Primal problem :

inf
(m,w)∈R

J̃ (m,w) :=
∑

(t,x)∈T ×S

˜̀[m,w ](t, x) +
∑
t∈T

φ[Aw ](t) +
∑
s∈T̄

F [m](s), (P̃)

subject to: Sw −m + m̄0 = 0.

• Dual problem : We define the mapping U : U → R(T̄ × S) associates with (γ,P) ∈ U
the solution u ∈ R(T̄ × S) to the dynamic programming equation{

u(t, x) + `?[−A?P − S?u](t, x) = γ(t, x) (t, x) ∈ T × S,
u(T , x) = γ(T , x), x ∈ S.

max
(γ,P)∈U

D̃(γ,P) := 〈m̄0,U[γ,P]〉 −
∑
t∈T

φ?[P](t)−
∑
s∈T̄

F?[γ](s). (D̃)
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Main results

Assumptions

• Maps `(t, x , ·), F (s, ·), and φ(t, ·) are proper, convex and lower semi-continuous. In
addition dom(`(t, x , ·)) ⊆ ∆(S) is convex.

• Qualification Assumption.

Results

• Duality result : min (P̃) = −max (D̃).

• Let (m, π, u, γ,P) be a solution to (MFG). Then (m,w := mπ) is solution to (P̃) and
(γ,P) is solution to (D̃).

• Let (m,w) be solution to (P̃) and (γ,P) be solution to (D̃). Let û = U[γ,P] and let
π ∈ π[m,w , û, γ,P]. Then (m, π̂, û, γ,P) is a solution to (MFG).

• There exists a solution (m, π, u, γ,P) to (MFG). If F (s, ·) and φ(t, ·) are differentiable
then (u, γ,P) is uniquely defined. If `(t, x , ·), F (s, ·), and φ(t, ·) are strictly convex,
(MFG) has a unique solution.
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Situation (with and without hard constraint)

• The state x ∈ S of an individual agent represents a level of stock

• α(t, x , y) = y − x represents the quantity bought in order to “move” from a level of
stock x to y .

• The individual cost `(t, x , ρ) = 〈ρ(t, x), β(t, x)〉 for some matrix β, is linear.

• The potential φ[D] = φ1[D] + φ2[D], where

φ1[D] = 1
4 (D + D̄)2, φ2[D] = χ(−∞,Dmax](D).

The potential φ is the sum of a convex and differential term φ1 with full domain and a
convex non-differentiable term φ2.

• The level of demand

D(t) = Q[m, π](t) =
∑

(x,y)∈S2

m(t, x)π(t, x , y)α(t, x , y).

The quantity D̄ is a given exogenous quantity which represent a net demand (positive
or negative) to be satisfied by the agents. In this example D̄(t) = 2 sin(4πt/(T − 1))
for any t ∈ T and Dmax = 0.
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Cournot mean field game system



(i)
{

u(t, x) = infρ∈∆(S) `(t, x , ρ) +
∑

y∈S ρ(y)(α(t, x , y)P(t) + u(t + 1, y)),
u(T , x) = 0,

(ii) π(t, x , ·) ∈ arg min
ρ∈∆(S)

`(t, x , ρ) +
∑

y∈S ρ(y)(P(t)α(t, x , y) + u(t + 1, y)),

(iii)
{

m(t + 1, x) =
∑

y∈S m(t, y)π(t, y , x),
m(0, x) = m0(x),

(iv) P(t) ∈ ∂φ (t,D(t)) .
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Solution of the game without hard constraints: φ2 = 0

(a) D̄ and effective demand Deff (b) Price P
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Solution of the game with hard constraints: φ2[D] = χ(−∞,0](D)

(c) D̄ and effective demand Deff (d) Price P
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(h) Measure m (i) Mean displacement

v(t, x) :=
∑
y∈S

π(t, x , y)(y − x)

(j) Value u
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Summary about the numerical methods

(k) ADMM (l) ADMG

(m) Chambolle-Pock (n) Chambolle-Pock-Bregman
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Method Convergence guarantee Execution time (s)
ADMM No 2000
ADMG Yes 2000

Chambolle-Pock O(1/k) 1600
Chambolle-Pock-Bregman O(1/k) 1300

Figure: Convergence guarantee and execution time, N = 10000, |T | = |S| = 50
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Conclusion

• General framework for discrete and potential mean field games

• Existence and uniqueness results

• Numerical experiments with 4 methods

• Code available at lavignepierre.github.io

• Paper [BLP21] available on ArXiv

Thank you for your attention
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