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Industrial and scientific interests

−→ Study of complex two-phase flows

[Le Chenadec, 2012]

Industrial applications :

Liquid fuel injection : consumption, pollutants, ... ,

Aerospace, propulsion,

Leakage scenario in water systems of nuclear power plants.

Scientific challenge of the atomization process :

Multiscale problem,

Critical droplet size distribution for industrial process,

Difficulty with DNS : no convergence with mesh refinement [Ling, Fuster & al,
2017], highly dependent on the interface dynamics.
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Towards a unified reduced-order model for atomization

Separated phase

Eulerian approach with :

Averaged equations [Ishii, 1984]
[Drew, 1988],

Postulated equations [Truesdell, 1969]
[Baer & Nunziato, 1986].

Disperse phase

Kinetic based approach
[Massot & al, 2010]

or
Lagrangian tracking of the droplets

[Zamansky & al, 2014].

The models for separated phase do not degenerate well into the ones adapted to
disperse phase.
The models for disperse phase require an initially postulated droplet distribution.

−→ How do we unify the two approaches ?

Coupling between the two numerical strategies [Le Touze, 2015] [Cordesse & al,
2018],

First steps towards a unified reduced-order models with sub-scale phenomena
[Devassy & al, 2015] : transport of surface area density Σ.

Our goal : A model for the mixed and separated phase using geometric
variables Σ, H, G for a sub-scale model which degenerates into a disperse
model.
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Introduction to Stationary Action Principle

The SAP derives consistent momentum and energy equations from a Lagrangian.

L = U − T , δA =

∫
T

∫
Ω
L(y , y ′, t)dxdt = 0. (1)

Example : Euler equations

L(u, ρ) = 1
2
ρu2 − ρe(ρ).

δA = δAu + δAρ = 0.

∂tρ+∇ · (ρu) = 0.

⇒
{
∂t(ρu) +∇ · (ρu ⊗ u) +∇(p(ρ)) = 0,

∂t(E) +∇ · ((E + p)u) = 0,
(2)

with E = ρu2 + ρe(ρ).

Barotropic case : the energy holds as the mathematical entropy [Cordesse, 2020].



5/17

Introduction Two-phase/two-scale model using SAP Geometric variables Subscale oscillations Numerical strategy Conclusion

Derivation of a two-phase model using SAP

Recovering the transport of volumic fraction

Still assuming mass conservation

One-velocity
model with

α-dependency
L(u, ρ, α) =

1

2
ρu2 − ρe(ρ, α).

No equation on α and
p1 = p2.

With a sub-scale
kinetic energy

L(u, ρ, α,Dtα)

=
1

2
ρu2 +

1

2
ν(α)(Dtα)2 − ρe(ρ, α).

Additional “sub-scale”
momentum equation,
System ruling the dy-
namics of α and Dtα.

This last sub-scale kinetic energy can be interpreted using the Rayleigh-Plesset’s
model of a pulsating bubble [Drui, 2017].

−→ Let’s look for other sub-scale energies depending on α, Σ, H, G .
[Cordesse & al, 2020][Di Battista, 2021]
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Introduction and motivation to geometric variables

From a local description of a surface ... ... to a statistical one. [Pope, 1988]

Local main curvatures κ1, κ2 give :

dS = |e1 × e2|
1
2 ,

H =
1

2
(κ1 + κ2),

G = κ1κ2.

(3)

With a Surface Density Function (SDF)
F (x , t, ξ = (H,G , vI )) :

Σ =

∫
F (x , t, ξ)dξ,

Σ 〈H〉 =

∫
HF (x , t, ξ)dξ,

Σ 〈G〉 =

∫
GF (x , t, ξ)dξ.

(4)

With F d the Discrete SDF (DSDF) [Essadki, 2018],

Number Density Function (NDF)
DSDF↔ Averaged geometric variables

Disperse phase

NDF n(x , t, ξ) = G
4π

F d (x , t, ξ)

via the Gauss-Bonnet theorem.

Separated phase

SDF represents a
non-localized interface.
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Introduction and motivation to geometric variables

... to a statistical one. [Pope, 1988]

With a Surface Density Function (SDF)
F (x , t, ξ = (H,G , vI )) :

Σ =

∫
F (x , t, ξ)dξ,

Σ 〈H〉 =

∫
HF (x , t, ξ)dξ,

Σ 〈G〉 =

∫
GF (x , t, ξ)dξ.

(5)

With F d the Discrete SDF (DSDF) [Essadki, 2018],

Number Density Function (NDF)
DSDF↔ Averaged geometric variables

Disperse phase

NDF n(x , t, ξ̃) = G
4π

F d (x , t, ξ̃)

via the Gauss-Bonnet theorem.

Separated phase

SDF represents a
non-localized interface.
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Link with moments of a spherical droplets distribution

[Essadki, 2018] New phase space ξ̃ = (H̃, S̃ ,V , ṽI ) through G̃ = 4π
S̃

.

1
4π

Σ 〈G〉 = 1
4π

∫
G̃F d (x , t, ξ̃)d ξ̃ =

∫
n(x , t, ξ̃)d ξ̃ = m0

1√
4π

Σ 〈H〉 = 1√
4π

∫
1√
G̃
G̃F d (x , t, ξ̃)d ξ̃ =

∫ √
S̃n(x , t, ξ̃)d ξ̃ = m1/2

Σ =
∫

1
G̃
G̃F d (x , t, ξ̃)d ξ̃ =

∫
S̃n(x , t, ξ̃)d ξ̃ = m1

6
√
πα = 6

√
π
∫

4
3
π( S̃

4π
)3/2n(x , t, ξ̃)d ξ̃ = m3/2

For spherical droplets : n(x , t, ξ̃) = ñ(x , t, S̃ , ṽI )δ(H̃ − H̃S̃ (S̃))δ(V − VS̃ (S̃)).

The distribution closure can be :

A quadrature of moments

n(S) =
∑

i niδ(S − Si ).

A maximization of entropy

n(S0) = arg min(E [n]),

E [n] =

∫
n(S) ln(n(S))dS .
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Introduction and methodology

−→ Goal : Find the right variables to describe a polydisperse distribution of oscillating
variables.

The linear model of Rayleigh (1883)

Incompressibility ∆φ = 0,

Momentum ∂tφ+ 1
2
|∇φ|2 = 1

ρ
∇p,

Laplace’s pressure law p = −σH,
Kinematic closure ∂tR = ∂rφ− 1

R2∇Sφ · ∇SR.

−→ R is harmonic along each spherical mode.

Perturbation along mode Y 0
2 in the same spirit as the TAB

model [O’Rourke & Amsden, 1987].

−→ Similar to [Drui, 2017] and the sub-scale “micro-inertia” of bubble pulsations :

Step 1

Find the right variables
through Ek and Ep .

Step 2

Choose ξ = (S0, ...) to
link with the NDF.

Step 3

Distribution closure and
energies for SAP.
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Identification of the variables for the first order dynamic

Formalism of [Plümacher, 2020] on the unit sphere S2.

Potential energy

Ep = σ(S − S0). (6)

Kinetic energy

Ek =
1

2
ρ

∫
V
∇φ · ∇φdV . (7)

At order 2 :

Ep =
1

2
σf (2)x2

2 =
1

2
ρR3

0ω
2
2x

2
2 ,

Ek =
1

2
ρR3

0 ẋ
2
2 ,

(8)

with x2 =

〈
Y 0

2 ,R
(1)
〉

√
2

, and R = R0+R(1)+R(2)+....
[CORIA - ARCHER]

Then, ẍ2 + ω2
2x2 = 0,

with ω2
l =

σ

ρR3
0

f (l) =
σ

ρR3
0

l(l + 2)(l − 1).
(9)

x2(t)
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Identification of the variables for the first order dynamic

Link with geometric variables

Differential geometry

First variations of average geometric quantities [Deserno, 2015]:

δV =

∫
S2

[
R2

0

(
R(1) + R(2) + R(3)

)
+ R0

(
(R(1))2 + 2R(1)R(2)

)
+

1

3
R(3)

]
dS ,

δS =

∫
S2

[
2R0

(
R(1) + R(2) + R(3)

)
+
(

(R(1))2 + 2R(1)R(2)
)

−
1

2

(
R(1)∆S2R(1) + R(2)∆S2R(1) + R(1)∆S2R(2)

)]
dS .

(10)

Under incompressibility (δV = 0), order 2 devlopment and mode 2 perturbation, we
obtain :

x2
2 =

S − S0

2
,

{
x2 > 0 if prolate,
x2 < 0 if oblate.

(11)

Ep =
1

2
4σ
(√

S − S0

)2
, Ek =

1

2

ρR3
0

2

(
∂t
(√

S − S0

))2
. (12)

x2 is the right quantity which drives the motion studied in [Cordesse & al, 2020].
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DNS validation of the first order model and non-linearity

Measure of geometric variables (〈G〉 below) on a droplet DNS using Mercur(v)e1

[Di Battista, 2021]

[CORIA - ARCHER]

DNS post-processing of geometric
quantities combined with differential
geometry tools enable to precisely study
non-linear behaviour.

Second order potential energy

Ep = 1
2

8x2
2

Geometric closure

S̃ − S̃0 = f
(
R0

(
S̃H̃ − S̃0H̃0

))

1
gitlab.com/rubendibattista/mercurve
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New distribution variable for droplets oscillations

Extension of M. Essadki’s NDF by defining :

ξ̃ =
(
H̃, S̃0, ψ̃, ṽI

)
, with ψ̃ =

√
S̃ − S̃0

S̃0

. (13)

For oscillating droplets : n(x , t, ξ̃) = n̄(x , t, S̃0, ψ̃, ṽI )δ(H̃ − H̃S̃0,ψ̃
(S̃0, ψ̃)).

Link geometric variables to moments of n :

1
4π

Σ 〈G〉 = m0,0,

1√
4π

Σ 〈H〉 = m1/2,0 + m1/2,2,

Σ = m1 + m1,2,

6
√
πα = m3/2,0.

Differential geometry

At order 2,

S̃ − S̃0 = R0

(
S̃H̃ − S̃0H̃0

)
,

and Ĥ(S̃0, ψ̃) is then explicit.

−→ Two new moments are available : m1/2,2 and m1,2.
−→ When we reach sphericity, m1/2,2 and m1,2 go to zero and the model
degenerates towards a model of polydisperse spherical droplets.
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Distribution closure and averaged energies

Mono-disperse closure

n(S0, ψ) = n1δ(S0−(S0)1)δ(ψ−ψ1), (14)

3 moments needed :
m0,0, m3/2,0, m1,2.

Poly-disperse closure

n(S0, ψ) =n1δ(S0 − (S0)1)δ(ψ − ψ1)

+n2δ(S0 − (S0)2)δ(ψ − ψ2),

(15)

6 moments needed :
m0,0, m1/2,0, m1,0, m3/2,0, m1/2,2, m1,2.

For the mono-disperse closure,

n = m0,0, (S0)1 =

(
m3/2,0

m0,0

)2/3

, ψ1 =
(m

1/2
1,2 )

(m0,0)1/6(m3/2,0)1/3
. (16)

Assuming equi-probable phase within our droplets collection, the potential and kinetic
energies read :

Ep,coll =
1

2
2σ (Σ− Σ0) , Ek,coll =

3π3/2

8
ρ

α

Σ 〈G〉

(
∂t
√

Σ− Σ0

)2
. (17)

−→ Subscale energies for the derivation of a reduced-order model with SAP.
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A Finite-Volume solver : Josiepy

Josiepy2 is a Finite-Volume solver created by R. Di Battista which solves :

∂tq +∇ ·
(

F(q) + D(q) · ∇q

)
+ B(q) · ∇q = s(q). (18)

Good to know about Josiepy

An open-source solver using Python and the Numpy library,

Hands-on implementation : a new model requires only to add F , D and B for
the state q under scrutiny,

Classical space schemes (Rusanov, HLL, HLLC, Upwind) and time schemes
(Runge-Kutta) are available.

2
gitlab.com/rubendibattista/josiepy
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Application to a two-phase model with interfacial density

For our targeted model, we would have at most :

q = (αρk , αρuk , αρek , α,Σ,Σ 〈G〉 ,Σ 〈H〉 ,m1/2,2,m1,2), k = 1, 2. (19)

Kelvin-Helmotz instability on a model with interfacial area density [Lhuillier, 2004]

∂tΣ +∇ · (Σu) =
2

3
Σ∇ · u + sΣ(x , t,Σ). (20)

The initial interfacial imperfection within a velocity shear triggers the instability.
(Test-case from [Di Battista, 2021])

From top-left to bottom-right : Pressure, volumic fraction α, ω = Dtα
ρYΣ2 , z = Σ2/3

ρ1/2 .
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Conclusion and perspectives

Conclusion

Identification of a new variable to describe droplets oscillations with two new
corresponding moments m1/2,2 and m1,2,

Derivation of kinetic and potential energies for SAP with both mono-disperse
and poly-disperse quadratures,

An efficient environment to study non-linearity with DNS post-processing of
geometric variables with Mercur(v)e, differential geometry and computational
algebra.

Perspectives

Derivation of a new set of equations with SAP using the new variable x2,
[A. Loison, R. Di Battista, S. Kokh, M. Massot, T. Pichard. Diffuse interface model for two-phase two-scale

flow using stationary action principle, geometrical variables and a finite-volume method. In preparation]

Add non-linear dynamics / geometrical closures to the model,

Development and implementation of specific schemes for Josiepy to stay in the
moments space for the kinetic approach (work in collaboration with K.
Ait-Ameur),

Application to model with evaporation (work in collaboration with W.
Haegeman, ONERA)

Investigate exchange terms between large and sub-scale using DNS.
[A. Loison, S. Kokh, M. Massot, T. Pichard. Sub-scale modeling for eulerian two-phase flows : analysis of

a perturbed droplet using differential geometry. In preparation]
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Non-linear dynamics of the droplet

The next order of the dynamics gives us :

Ek =
1

2
ρR3

0 ẋl
2, and Ep = σ

(
f (l)

2
x2
l −

g(l)

3R0
x3
l

)
, (21)

with xl = ε 1√
l∗

〈
Ym∗
l∗ ,R(1) + εR(2) + ε l

∗+3
8

(R(1))2

R0

〉
.

Third order variations of both S and SH give us that :

xl = 3

√
3R0

h(l∗)− g(l∗)
(R0(S 〈H〉 − (S 〈H〉)0)− (S − S0)). (22)

And the dynamic is given by :

ẍ2 + ω2x2 −
g(2)

f (2)

x2
2

R0
= 0. (23)

DNS with post-processing to get xl confirms the
same behaviour as the one of the ODE.

S − S0 from [Di Battista, 2021]
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Polydisperse closure

Let’s use the 6 moments m0,0, m1/2,0, m1,0, m3/2,0, m1/2,2, m1,2, for the quadrature
closure :

n(S0, ξ) = n1δ(S0 − (S0)1)δ(ξ − ξ1) + n2δ(S0 − (S0)2)δ(ξ − ξ2). (24)

With ∆ = (m0,0m3/2,0 −m1,0m1/2,0)2 − 4(m0,0m1,0 −m2
1/2,0

)(m1/2,0m3/2,0 −m2
1,0),

we obtain :

n1 =
1

2

m0,0 +
m0,0(m1,0m1/2,0 − m0,0m3/2,0) + 2m1/2,0(m0,0m1,0 − m2

1/2,0)
√

∆

 ,
n2 =

1

2

m0,0 −
m0,0(m1,0m1/2,0 − m0,0m3/2,0) + 2m1/2,0(m0,0m1,0 − m2

1/2,0)
√

∆

 ,
(25)

(S0)1 =
(m0,0m3/2,0 − m1,0m1/2,0)

√
∆ + (m0,0m3/2,0 − m1,0m1/2,0)2 + 2m0,0m

3
1,0 − 2m1,0m1/2,0m3/2,0m0,0 + 2m3

1/2,0m3/2,0

2
(
m2

1/2,0
− m0,0m1,0

)2
,

(S0)2 =
(m0,0m3/2,0 − m1,0m1/2,0)

√
∆ + (m0,0m3/2,0 − m1,0m1/2,0)2 + 2m0,0m

3
1,0 − 2m1,0m1/2,0m3/2,0m0,0 + 2m3

1/2,0m3/2,0

2
(
m2

1/2,0
− m0,0m1,0

)2
.

(26)

And two other expressions using the 6 moments for ξ1 and ξ2.
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Oscillating model with Hamiltonian mechanics

Given kinetic and potential energies :

Ep =
1

2
2σ (Σ− Σ0) , Ek =

3π3/2

8
ρ

α

Σ 〈G〉

(
∂t
√

Σ− Σ0

)2
. (27)

We assumed ∂tα = ∂t(Σ 〈G〉) = 0 and we note :

m =
3π3/2

4
ρ

α

Σ 〈G〉
, p = m

(
∂t
√

Σ− Σ0

)
, q =

√
Σ− Σ0. (28)

The hamiltonian : H = p2

2m
+ Ep , then

{
q̇ = ∂pH,
ṗ = −∂qH,

q̇ =
p

m
,

ṗ = −2σq,
(29)

q̈ +
2σ

m
q = 0. (30)

We recover the harmonic oscillator.
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