Two-phase separated and disperse flow : towards a two-scale diffuse interface model with geometrical variables

Arthur Loison<sup>1</sup>

Ruben Di Battista<sup>1</sup>, Samuel Kokh<sup>2</sup>, Marc Massot<sup>1</sup>, Teddy Pichard<sup>1</sup>

<sup>1</sup>CMAP, École polytechnique <sup>2</sup>CEA, Saclay

June 21st. 2021









 Introduction
 Two-phase/two-scale model using SAP
 Geometric variables
 Subscale oscillations
 Numerical strategy
 Conclusion

 •O
 O
 OO
 OO

## Industrial and scientific interests

# $\longrightarrow$ Study of complex two-phase flows



[Le Chenadec, 2012]

Industrial applications :

- Liquid fuel injection : consumption, pollutants, ... ,
- Aerospace, propulsion,
- Leakage scenario in water systems of nuclear power plants.

Scientific challenge of the atomization process :

- Multiscale problem,
- Critical droplet size distribution for industrial process,
- Difficulty with DNS : no convergence with mesh refinement [Ling, Fuster & al, 2017], highly dependent on the interface dynamics.

## Towards a unified reduced-order model for atomization

### Separated phase

Eulerian approach with :

Averaged equations [Ishii, 1984] [Drew, 1988], Postulated equations [Truesdell, 1969] [Baer & Nunziato, 1986].

### Disperse phase

Kinetic based approach [Massot & al, 2010] or Lagrangian tracking of the droplets [Zamansky & al, 2014].

The models for separated phase do not degenerate well into the ones adapted to disperse phase.

The models for disperse phase require an initially postulated droplet distribution.

### $\longrightarrow$ How do we unify the two approaches ?

- Coupling between the two numerical strategies [Le Touze, 2015] [Cordesse & al, 2018],
- First steps towards a unified reduced-order models with sub-scale phenomena [Devassy & al, 2015] : transport of surface area density Σ.

Our goal : A model for the mixed and separated phase using geometric variables  $\Sigma$ , H, G for a sub-scale model which degenerates into a disperse model.



## Introduction to Stationary Action Principle

The SAP derives consistent momentum and energy equations from a Lagrangian.

$$\mathcal{L} = U - T, \qquad \delta \mathcal{A} = \int_T \int_\Omega \mathcal{L}(y, y', t) dx dt = 0.$$
 (1)

#### Example : Euler equations

$$\frac{\mathcal{L}(u,\rho) = \frac{1}{2}\rho u^2 - \rho e(\rho).}{\delta \mathcal{A} = \delta \mathcal{A}_u + \delta \mathcal{A}_\rho = 0.} \Rightarrow \begin{cases} \partial_t(\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla(\rho(\rho)) = 0, \\ \partial_t(E) + \nabla \cdot ((E+\rho)u) = 0, \end{cases} \Rightarrow \begin{cases} \partial_t(\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla(\rho(\rho)) = 0, \\ \partial_t(E) + \nabla \cdot ((E+\rho)u) = 0, \end{cases} \end{cases}$$
(2)

Barotropic case : the energy holds as the mathematical entropy [Cordesse, 2020].



# Derivation of a two-phase model using SAP

### Recovering the transport of volumic fraction

| Still assuming mass conservation                           |                                                                                                                                |                                                      |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| One-velocity<br>model with<br>$\alpha$ - <b>dependency</b> | $\mathcal{L}(u, \rho, \alpha) = \frac{1}{2}\rho u^2 - \rho e(\rho, \alpha).$                                                   | No equation on $\alpha$ and $p_1 = p_2$ .            |
| With a <b>sub-scale</b><br>kinetic energy                  | $\mathcal{L}(u,\rho,\alpha,D_t\alpha)$<br>= $\frac{1}{2}\rho u^2 + \frac{1}{2}\nu(\alpha)(D_t\alpha)^2 - \rho e(\rho,\alpha).$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |

This last sub-scale kinetic energy can be interpreted using the Rayleigh-Plesset's model of a pulsating bubble [Drui, 2017].

 $\longrightarrow$  Let's look for other sub-scale energies depending on  $\alpha$ ,  $\Sigma$ , H, G. [Cordesse & al, 2020][Di Battista, 2021]

## Introduction and motivation to geometric variables

From a local description of a surface ...

Local main curvatures  $\kappa_1, \kappa_2$  give :

... to a statistical one. [Pope, 1988]

With a Surface Density Function (SDF)  $F(x, t, \xi = (H, G, v_I))$ :



$$dS = |e_1 \times e_2|^{\frac{1}{2}},$$
  

$$H = \frac{1}{2}(\kappa_1 + \kappa_2), \quad (3)$$
  

$$G = \kappa_1 \kappa_2.$$

$$\Sigma = \int F(x, t, \xi) d\xi,$$
  

$$\Sigma \langle H \rangle = \int HF(x, t, \xi) d\xi, \qquad (4)$$
  

$$\Sigma \langle G \rangle = \int GF(x, t, \xi) d\xi.$$

With  $F^d$  the Discrete SDF (DSDF) [Essadki, 2018],

Number Density Function (NDF)  $\overset{DSDF}{\leftrightarrow}$  Averaged geometric variables



Introduction Two-phase/two-scale model using SAP Geometric variables Subscale oscillations Oo

## Introduction and motivation to geometric variables



... to a statistical one. [Pope, 1988]

With a Surface Density Function (SDF)  $F(x, t, \xi = (H, G, v_l))$ :

$$\Sigma = \int F(x, t, \xi) d\xi,$$
  

$$\Sigma \langle H \rangle = \int HF(x, t, \xi) d\xi, \qquad (5)$$
  

$$\Sigma \langle G \rangle = \int GF(x, t, \xi) d\xi.$$

With  $F^d$  the Discrete SDF (DSDF) [Essadki, 2018],

Number Density Function (NDF)  $\stackrel{DSDF}{\leftrightarrow}$  Averaged geometric variables



Introduction Two-phase/two-scale model using SAP Geometric variables Subscale oscillations Over one of the state of the st

# Link with moments of a spherical droplets distribution

[Essadki, 2018] New phase space 
$$ilde{\xi}=( ilde{H}, ilde{S},V, ilde{v}_l)$$
 through  $ilde{G}=rac{4\pi}{ ilde{S}}.$ 

$$\frac{1}{4\pi}\Sigma \langle G \rangle = \frac{1}{4\pi}\int \tilde{G}F^d(x,t,\tilde{\xi})d\tilde{\xi} = \int n(x,t,\tilde{\xi})d\tilde{\xi} = m_0$$

$$\frac{1}{\sqrt{4\pi}}\Sigma\left\langle H\right\rangle \ = \ \frac{1}{\sqrt{4\pi}}\int \frac{1}{\sqrt{\tilde{c}}}\tilde{G}F^{d}(x,t,\tilde{\xi})d\tilde{\xi} \ = \ \int \sqrt{\tilde{S}}n(x,t,\tilde{\xi})d\tilde{\xi} \ = \ m_{1/2}$$

$$\Sigma = \int \frac{1}{\tilde{G}} \tilde{G} F^d(x,t,\tilde{\xi}) d\tilde{\xi} = \int \tilde{S} n(x,t,\tilde{\xi}) d\tilde{\xi} = m_1$$

$$6\sqrt{\pi}\alpha = 6\sqrt{\pi}\int \frac{4}{3}\pi (\frac{\tilde{s}}{4\pi})^{3/2} n(x,t,\tilde{\xi})d\tilde{\xi} = m_{3/2}$$

For spherical droplets :  $n(x, t, \tilde{\xi}) = \tilde{n}(x, t, \tilde{S}, \tilde{v}_l)\delta(\tilde{H} - \tilde{H}_{\tilde{S}}(\tilde{S}))\delta(V - V_{\tilde{S}}(\tilde{S})).$ 

The distribution closure can be :



## Introduction and methodology

 $\longrightarrow$  Goal : Find the right variables to describe a polydisperse distribution of oscillating variables.



### The linear model of Rayleigh (1883)

Incompressibility Momentum Laplace's pressure law Kinematic closure

$$\begin{aligned} \Delta \phi &= 0,\\ \partial_t \phi + \frac{1}{2} |\nabla \phi|^2 &= \frac{1}{\rho} \nabla \rho,\\ \rho &= -\sigma H,\\ \partial_t R &= \partial_r \phi - \frac{1}{R^2} \nabla_S \phi \cdot \nabla_S R \end{aligned}$$

 $\longrightarrow$  *R* is harmonic along each spherical mode.



Perturbation along mode  $Y_2^0$  in the same spirit as the TAB model [O'Rourke & Amsden, 1987].

 $\longrightarrow$  Similar to [Drui, 2017] and the sub-scale "micro-inertia" of bubble pulsations :

### Step 1

Find the right variables through  $E_k$  and  $E_p$ .

#### Step 2

Choose  $\xi = (S_0, ...)$  to link with the NDF.

#### Step 3

Distribution closure and energies for SAP.

Introduction Two-phase/two-scale model using SAP Geometric variables Subscale oscillations of occurrence of the state of t

# Identification of the variables for the first order dynamic

Formalism of [Plümacher, 2020] on the unit sphere  $\mathbb{S}^2$ .

Potential energy

$$E_p = \sigma(S - S_0). \tag{6}$$

### Kinetic energy

$$E_k = \frac{1}{2}\rho \int_V \nabla \phi \cdot \nabla \phi dV. \tag{7}$$

At order 2 :

$$E_{\rho} = \frac{1}{2}\sigma f(2)x_{2}^{2} = \frac{1}{2}\rho R_{0}^{3}\omega_{2}^{2}x_{2}^{2},$$

$$E_{k} = \frac{1}{2}\rho R_{0}^{3}\dot{x}_{2}^{2},$$
(8)
with  $x_{2} = \frac{\langle Y_{2}^{0}, R^{(1)} \rangle}{\sqrt{2}}$ , and  $R = R_{0} + R^{(1)} + R^{(2)} + ...$ 
Then,  $\ddot{x}_{2} + \omega_{2}^{2}x_{2} = 0,$ 
with  $\omega_{l}^{2} = \frac{\sigma}{\rho R_{0}^{3}}f(l) = \frac{\sigma}{\rho R_{0}^{3}}I(l+2)(l-1).$ 
(9)



[CORIA - ARCHER]



 $x_2(t)$ 

## Identification of the variables for the first order dynamic

#### Link with geometric variables

#### Differential geometry

First variations of average geometric quantities [Deserno, 2015]:

$$\begin{split} \delta V &= \int_{\mathbb{S}^2} \left[ R_0^2 \left( R^{(1)} + R^{(2)} + R^{(3)} \right) + R_0 \left( (R^{(1)})^2 + 2R^{(1)}R^{(2)} \right) + \frac{1}{3}R^{(3)} \right] dS, \\ \delta S &= \int_{\mathbb{S}^2} \left[ 2R_0 \left( R^{(1)} + R^{(2)} + R^{(3)} \right) + \left( (R^{(1)})^2 + 2R^{(1)}R^{(2)} \right) \\ &- \frac{1}{2} \left( R^{(1)} \Delta_{\mathbb{S}^2} R^{(1)} + R^{(2)} \Delta_{\mathbb{S}^2} R^{(1)} + R^{(1)} \Delta_{\mathbb{S}^2} R^{(2)} \right) \right] dS. \end{split}$$
(10)

Under incompressibility ( $\delta V = 0$ ), order 2 devlopment and mode 2 perturbation, we obtain :  $S = S_0$  (  $x_0 > 0$  if prolate

$$x_2^2 = \frac{S - S_0}{2}, \begin{cases} x_2 > 0 \text{ if prolate,} \\ x_2 < 0 \text{ if oblate.} \end{cases}$$
(11)

$$E_{\rho} = \frac{1}{2} 4\sigma \left(\sqrt{S - S_0}\right)^2, \qquad E_k = \frac{1}{2} \frac{\rho R_0^3}{2} \left(\partial_t \left(\sqrt{S - S_0}\right)\right)^2.$$
(12)

 $x_2$  is the right quantity which drives the motion studied in [Cordesse & al, 2020].

# DNS validation of the first order model and non-linearity

Measure of geometric variables ((G) below) on a droplet DNS using Mercur(v)e<sup>1</sup> [Di Battista, 2021]



[CORIA - ARCHER]

Second order potential energy



Geometric closure

DNS post-processing of geometric quantities combined with differential geometry tools enable to precisely study

non-linear behaviour



gitlab.com/rubendibattista/mercurve

## New distribution variable for droplets oscillations

Extension of M. Essadki's NDF by defining :

$$\tilde{\xi} = \left(\tilde{H}, \tilde{S}_0, \tilde{\psi}, \tilde{v}_l\right), \quad \text{with} \quad \tilde{\psi} = \sqrt{\frac{\tilde{S} - \tilde{S}_0}{\tilde{S}_0}}.$$
(13)

For oscillating droplets :

$$n(x,t,\tilde{\xi})=\bar{n}(x,t,\tilde{S}_0,\tilde{\psi},\tilde{v}_I)\delta(\tilde{H}-\tilde{H}_{\tilde{S}_0,\tilde{\psi}}(\tilde{S}_0,\tilde{\psi})).$$

Link geometric variables to moments of n:

$$\begin{aligned} \frac{1}{4\pi} \Sigma \langle G \rangle &= m_{0,0}, \\ \frac{1}{\sqrt{4\pi}} \Sigma \langle H \rangle &= m_{1/2,0} + m_{1/2,2}, \\ \Sigma &= m_1 + m_{1,2}, \\ 6\sqrt{\pi}\alpha &= m_{3/2,0}. \end{aligned}$$

#### Differential geometry

At order 2,  

$$\tilde{S} - \tilde{S}_0 = R_0 \left( \tilde{S}\tilde{H} - \tilde{S}_0\tilde{H}_0 \right)$$
,  
and  $\hat{H}(\tilde{S}_0, \tilde{\psi})$  is then explicit.

 $\rightarrow$  Two new moments are available :  $m_{1/2,2}$  and  $m_{1,2}$ .  $\rightarrow$  When we reach sphericity,  $m_{1/2,2}$  and  $m_{1,2}$  go to zero and the model degenerates towards a model of polydisperse spherical droplets.

# Distribution closure and averaged energies

Mono-disperse closure

$$n(S_0,\psi) = n_1 \delta(S_0 - (S_0)_1) \delta(\psi - \psi_1), \quad (14)$$

3 moments needed :  $m_{0,0}, m_{3/2,0}, m_{1,2}$ .

#### Poly-disperse closure

$$n(S_0, \psi) = n_1 \delta(S_0 - (S_0)_1) \delta(\psi - \psi_1) + n_2 \delta(S_0 - (S_0)_2) \delta(\psi - \psi_2),$$
(15)

6 moments needed :  $m_{0,0}, \ m_{1/2,0}, \ m_{1,0}, \ m_{3/2,0}, \ m_{1/2,2}, \ m_{1,2}.$ 

For the mono-disperse closure,

$$n = m_{0,0}, \quad (S_0)_1 = \left(\frac{m_{3/2,0}}{m_{0,0}}\right)^{2/3}, \quad \psi_1 = \frac{(m_{1,2}^{1/2})}{(m_{0,0})^{1/6}(m_{3/2,0})^{1/3}}.$$
 (16)

Assuming equi-probable phase within our droplets collection, the potential and kinetic energies read :

$$E_{\rho,coll} = \frac{1}{2} 2\sigma \left( \Sigma - \Sigma_0 \right), \qquad E_{k,coll} = \frac{3\pi^{3/2}}{8} \rho \frac{\alpha}{\Sigma \langle G \rangle} \left( \partial_t \sqrt{\Sigma - \Sigma_0} \right)^2.$$
(17)

 $\longrightarrow$  Subscale energies for the derivation of a reduced-order model with SAP.

# A Finite-Volume solver : Josiepy

Josiepy<sup>2</sup> is a Finite-Volume solver created by R. Di Battista which solves :

$$\partial_t \mathbf{q} + \nabla \cdot \left( \underbrace{\underline{F}}(\mathbf{q}) + \underbrace{D(\mathbf{q})}_{\blacksquare\blacksquare\blacksquare} \cdot \nabla \mathbf{q} \right) + \underbrace{\underline{B}(\mathbf{q})}_{\blacksquare\blacksquare\blacksquare} \cdot \nabla \mathbf{q} = \mathbf{s}(\mathbf{q}).$$
 (18)

#### Good to know about Josiepy

- An open-source solver using Python and the Numpy library,
- Hands-on implementation : a new model requires only to add F, D and B for the state q under scrutiny,
- Classical space schemes (Rusanov, HLL, HLLC, Upwind) and time schemes (Runge-Kutta) are available.



gitlab.com/rubendibattista/josiepy

# Application to a two-phase model with interfacial density

For our targeted model, we would have at most :

$$q = (\alpha \rho_k, \alpha \rho u_k, \alpha \rho e_k, \alpha, \Sigma, \Sigma \langle G \rangle, \Sigma \langle H \rangle, m_{1/2,2}, m_{1,2}), \qquad k = 1, 2.$$
(19)

Kelvin-Helmotz instability on a model with interfacial area density [Lhuillier, 2004]

$$\partial_t \Sigma + \nabla \cdot (\Sigma u) = \frac{2}{3} \Sigma \nabla \cdot u + s_{\Sigma}(x, t, \Sigma).$$
 (20)

The initial interfacial imperfection within a velocity shear triggers the instability. (Test-case from [Di Battista, 2021])



From top-left to bottom-right : Pressure, volumic fraction  $\alpha$ ,  $\omega = \frac{D_t \alpha}{\rho Y \Sigma^2}$ ,  $z = \frac{\Sigma^{2/3}}{\rho^{1/2}}$ .

 Introduction
 Two-phase/two-scale model using SAP
 Geometric variables
 Subscale oscillations
 Numerical strategy
 Conclusion

 00
 00
 00
 00
 00
 00
 00
 00

# Conclusion and perspectives

#### Conclusion

- Identification of a new variable to describe droplets oscillations with two new corresponding moments  $m_{1/2,2}$  and  $m_{1,2}$ ,
- Derivation of kinetic and potential energies for SAP with both mono-disperse and poly-disperse quadratures,
- An efficient environment to study non-linearity with DNS post-processing of geometric variables with Mercur(v)e, differential geometry and computational algebra.

#### Perspectives

- Derivation of a new set of equations with SAP using the new variable x<sub>2</sub>,
   [A. Loison, R. Di Battista, S. Kokh, M. Massot, T. Pichard. Diffuse interface model for two-phase two-scale flow using stationary action principle, geometrical variables and a finite-volume method. In preparation]
- Add non-linear dynamics / geometrical closures to the model,
- Development and implementation of specific schemes for Josiepy to stay in the moments space for the kinetic approach (work in collaboration with K. Ait-Ameur),
- Application to model with evaporation (work in collaboration with W. Haegeman, ONERA)
- Investigate exchange terms between large and sub-scale using DNS.
   [A. Loison, S. Kokh, M. Massot, T. Pichard. Sub-scale modeling for eulerian two-phase flows : analysis of a perturbed droplet using differential geometry. In preparation]

# Non-linear dynamics of the droplet

The next order of the dynamics gives us :

$$E_{k} = \frac{1}{2}\rho R_{0}^{3} \dot{x}_{l}^{2}, \quad \text{and} \quad E_{p} = \sigma \left(\frac{f(l)}{2} x_{l}^{2} - \frac{g(l)}{3R_{0}} x_{l}^{3}\right), \quad (21)$$
with  $x_{l} = \epsilon \frac{1}{\sqrt{l^{*}}} \left\langle Y_{l^{*}}^{m^{*}}, R^{(1)} + \epsilon R^{(2)} + \epsilon \frac{l^{*}+3}{8} \frac{(R^{(1)})^{2}}{R_{0}} \right\rangle.$ 

Third order variations of both S and SH give us that :

$$x_{l} = \sqrt[3]{\frac{3R_{0}}{h(l^{*}) - g(l^{*})}} (R_{0}(S \langle H \rangle - (S \langle H \rangle)_{0}) - (S - S_{0})).$$
(22)

And the dynamic is given by :

$$\ddot{x}_2 + \omega^2 x_2 - \frac{g(2)}{f(2)} \frac{x_2^2}{R_0} = 0.$$
 (23)

DNS with post-processing to get  $x_l$  confirms the same behaviour as the one of the ODE.



 $S - S_0$  from [Di Battista, 2021]

1/3

## Polydisperse closure

Let's use the 6 moments  $m_{0,0}, m_{1/2,0}, m_{1,0}, m_{3/2,0}, m_{1/2,2}, m_{1,2}$ , for the quadrature closure :

$$n(S_0,\xi) = n_1 \delta(S_0 - (S_0)_1) \delta(\xi - \xi_1) + n_2 \delta(S_0 - (S_0)_2) \delta(\xi - \xi_2).$$
(24)

With  $\Delta = (m_{0,0}m_{3/2,0} - m_{1,0}m_{1/2,0})^2 - 4(m_{0,0}m_{1,0} - m_{1/2,0}^2)(m_{1/2,0}m_{3/2,0} - m_{1,0}^2)$ , we obtain :

$$n_{1} = \frac{1}{2} \left( m_{0,0} + \frac{m_{0,0}(m_{1,0}m_{1/2,0} - m_{0,0}m_{3/2,0}) + 2m_{1/2,0}(m_{0,0}m_{1,0} - m_{1/2,0}^{2})}{\sqrt{\Delta}} \right),$$

$$n_{2} = \frac{1}{2} \left( m_{0,0} - \frac{m_{0,0}(m_{1,0}m_{1/2,0} - m_{0,0}m_{3/2,0}) + 2m_{1/2,0}(m_{0,0}m_{1,0} - m_{1/2,0}^{2})}{\sqrt{\Delta}} \right),$$
(25)

$$(S_{0})_{1} = \frac{(m_{0,0}m_{3/2,0} - m_{1,0}m_{1/2,0})\sqrt{\Delta} + (m_{0,0}m_{3/2,0} - m_{1,0}m_{1/2,0})^{2} + 2m_{0,0}m_{1,0}^{3} - 2m_{1,0}m_{1/2,0}m_{3/2,0}m_{0,0} + 2m_{1/2,0}^{3}m_{3/2,0}m_{0,0}}{2\left(m_{1/2,0}^{2} - m_{0,0}m_{1,0}\right)^{2}}$$

$$(S_{0})_{2} = \frac{(m_{0,0}m_{3/2,0} - m_{1,0}m_{1/2,0})\sqrt{\Delta} + (m_{0,0}m_{3/2,0} - m_{1,0}m_{1/2,0})^{2} + 2m_{0,0}m_{1,0}^{3} - 2m_{1,0}m_{1/2,0}m_{3/2,0}m_{0,0} + 2m_{1/2,0}^{3}m_{3/2,0}m_{0,0}}{2\left(m_{1/2,0}^{2} - m_{0,0}m_{1,0}\right)^{2}}$$

$$(S_{0})_{2} = \frac{(m_{0,0}m_{3/2,0} - m_{1,0}m_{1/2,0})\sqrt{\Delta} + (m_{0,0}m_{3/2,0} - m_{1,0}m_{1/2,0})^{2} + 2m_{0,0}m_{1,0}^{3} - 2m_{1,0}m_{1/2,0}m_{3/2,0}m_{0,0} + 2m_{1/2,0}^{3}m_{3/2,0}m_{0,0}}{2\left(m_{1/2,0}^{2} - m_{0,0}m_{1,0}\right)^{2}}$$

$$(S_{0})_{3} = \frac{(m_{0,0}m_{3/2,0} - m_{1,0}m_{1/2,0})\sqrt{\Delta} + (m_{0,0}m_{3/2,0} - m_{1,0}m_{1/2,0})^{2} + 2m_{0,0}m_{1,0}^{3} - 2m_{1,0}m_{1/2,0}m_{3/2,0}m_{0,0} + 2m_{1/2,0}^{3}m_{3/2,0}m_{0,0}}{2\left(m_{1/2,0}^{2} - m_{0,0}m_{1,0}\right)^{2}}$$

$$(S_{0})_{3} = \frac{(m_{0,0}m_{3/2,0} - m_{0,0}m_{1/2,0})\sqrt{\Delta} + (m_{0,0}m_{3/2,0} - m_{0,0}m_{1/2,0})^{2} + 2m_{0,0}m_{1,0}^{3} - 2m_{1,0}m_{1/2,0}m_{3/2,0}m_{0,0} + 2m_{1/2,0}^{3}m_{3/2,0}m_{0,0}}{2\left(m_{1/2,0}^{2} - m_{0,0}m_{1,0}\right)^{2}}}$$

And two other expressions using the 6 moments for  $\xi_1$  and  $\xi_2$ .

## Oscillating model with Hamiltonian mechanics

Given kinetic and potential energies :

$$E_{P} = \frac{1}{2} 2\sigma \left( \Sigma - \Sigma_{0} \right), \qquad E_{k} = \frac{3\pi^{3/2}}{8} \rho \frac{\alpha}{\Sigma \langle G \rangle} \left( \partial_{t} \sqrt{\Sigma - \Sigma_{0}} \right)^{2}.$$
(27)

We assumed  $\partial_t \alpha = \partial_t (\Sigma \langle G \rangle) = 0$  and we note :

$$m = \frac{3\pi^{3/2}}{4} \rho \frac{\alpha}{\Sigma \langle G \rangle}, \qquad p = m \left( \partial_t \sqrt{\Sigma - \Sigma_0} \right), \qquad q = \sqrt{\Sigma - \Sigma_0}.$$
(28)

The hamiltonian :  $H = \frac{p^2}{2m} + E_p$ , then  $\begin{cases} \dot{q} = \partial_p H, \\ \dot{p} = -\partial_q H, \end{cases}$ 

$$\dot{q} = \frac{p}{m},$$

$$\dot{p} = -2\sigma q,$$
(29)

$$\ddot{q} + \frac{2\sigma}{m}q = 0. \tag{30}$$

We recover the harmonic oscillator.