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Industrial and scientific interests

— Study of complex two-phase flows

[Le Chenadec, 2012]

Industrial applications :
@ Liquid fuel injection : consumption, pollutants, ... ,

@ Aerospace, propulsion,

@ Leakage scenario in water systems of nuclear power plants.

Scientific challenge of the atomization process :
@ Multiscale problem,

@ Critical droplet size distribution for industrial process,

@ Difficulty with DNS : no convergence with mesh refinement [Ling, Fuster & al,
2017], highly dependent on the interface dynamics.



Introduction
°

Towards a unified reduced-order model for atomization

Separated phase

Disperse phase

Eulerian approach with : e —

Averaged equations [Ishii, 1984] [Massot i‘ral’ 2010]
[Drew, 1988], . -
Postulated equations [Truesdell, 1969] Lagra?%;an:at;:lfklzcg;f ;gif]roplets
[Baer & Nunziato, 1986]. Y ' ‘

The models for separated phase do not degenerate well into the ones adapted to
disperse phase.

The models for disperse phase require an initially postulated droplet distribution.
— How do we unify the two approaches ?

@ Coupling between the two numerical strategies [Le Touze, 2015] [Cordesse & al,
2018],

@ First steps towards a unified reduced-order models with sub-scale phenomena
[Devassy & al, 2015] : transport of surface area density X.

Our goal : A model for the mixed and separated phase using geometric
variables ¥, H, G for a sub-scale model which degenerates into a disperse
model.



Two-phase/two-scale model using SAP
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Introduction to Stationary Action Principle

The SAP derives consistent momentum and energy equations from a Lagrangian.

L=—U-T, 6A://£(y,y’,t)dxdt:0. (1)
TJQ

Example : Euler equations

L(u,p) = 3pu® — pe(p). R {&(pU) + V- (pu® u)+ V(p(p)) =0, @

0 =0A,+6A, =0.
g O:(E)+ V- ((E + p)u) =0,

Otp+ V- (pu) =0.
with E = pu? + pe(p).

Barotropic case : the energy holds as the mathematical entropy [Cordesse, 2020].



Two-phase/two-scale model using SAP
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Derivation of a two-phase model using SAP

Recovering the transport of volumic fraction

Still assuming mass conservation

One-velocity

- 1 N ti d
model with L(u,p, ) = Equ — pe(p, a). o equation on «a an

a-dependency pL = p2-
Additional “sub-scale”
With a sub-scale L(u, p,a, Diax) momentum equation,

System ruling the dy-

1 1
:EPU2+EV(Q)(Dta)z—Pe(Pya)- namics of a and D:o.

kinetic energy

This last sub-scale kinetic energy can be interpreted using the Rayleigh-Plesset’s
model of a pulsating bubble [Drui, 2017].

— Let’s look for other sub-scale energies depending on o, ¥, H, G.
[Cordesse & al, 2020][Di Battista, 2021]



Geometric variables
0

Introduction and motivation to geometric variables
From a local description of a surface ... ... to a statistical one. [Pope, 1988]

. . With a Surface Density Function (SDF)
Local main curvatures k1, kp give : F(x,t,€ = (H, G, v)) :

x— [ Fiorode,

e d5:|el><e2|%:
N
T Hlemem © m) = [ Hreede @
G = r1ra. ¥ (G) = / GF(x, t, £)dE.

With F? the Discrete SDF (DSDF) [Essadki, 2018],

Number Density Function (NDF) D2RF Averaged geometric variables

Disperse phase Separated phase

. °
e,
b .- NDF n(x, t,£) = %Fd(xv t,€) SDF represents a

o0
e ® . non-localized interface.
) via the Gauss-Bonnet theorem ~
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Introduction and motivation to geometric variables

... to a statistical one. [Pope, 1988]

3 / / E With a Surface Density Function (SDF)
: / Ja F(x,t.£ = (H, G, v)) :
1 / / E

/ 1

3 !

x— [ Fiorode,

/& Q () = [ HE(xtOdE ()

¥ (G) :/GF(X, t,€)dE.
With F? the Discrete SDF (DSDF) [Essadki, 2018],

Number Density Function (NDF) D2RF Averaged geometric variables

Disperse phase Separated phase

. °
o, . .
b .- NDF n(x, t,£) = &Fd(xv t,€) SDF represents a

o0
e ® . non-localized interface.
) via the Gauss-Bonnet theorem ~




Geometric variables
°

Link with moments of a spherical droplets distribution

[Essadki, 2018] New phase space £ = (H, 5, V, V) through G = 4T

5
=T(G) = & [GF(xt,8)d¢ = [n(xt,&)dé = mo
As(H) = mf L GFI(x, t,)dE = [/Sn(x,t, €)dE = mp
r o= ngFd x,r,s)ds = [Sn(x,t,&)dE - m
NG 637 [ 4n(2)32n(x, t,E)dE = my,

For spherical droplets : n(x, t,&) = f(x, t, 5, )(H — 1:15(5))5(V - V§(§))

The distribution closure can be :

A maximization of entropy

A quadrature of moments

n(So) = arg min(E[n]),
/n(S)In(n(S))dS.

e n(S) = 32, nid(S — S). \
; () = X md(S - S)) ﬁ\ ol




Subscale oscillations
°

Introduction and methodology

— Goal : Find the right variables to describe a polydisperse distribution of oscillating
variables.

The linear model of Rayleigh (1883)

Incompressibility A¢p =0,
Momentum Ot + % |V(;S|2 = %Vp,
Laplace’s pressure law p=—0oH,

Kinematic closure OtR = 0rp — %Vsqb -VsR.

— R is harmonic along each spherical mode.

() Perturbation along mode Y20 in the same spirit as the TAB
</ model [O'Rourke & Amsden, 1987].

— Similar to [Drui, 2017] and the sub-scale “micro-inertia” of bubble pulsations :

Find the right variables Choose £ = (S, ...) to Distribution closure and
through Ex and Ep. link with the NDF. energies for SAP.
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Identification of the variables for the first order dynamic

Formalism of [Pliimacher, 2020] on the unit sphere S2.

Kinetic energy

Potential energy

Ep = o(S — So). (6) Ei = %p/v Vo VédV.  (7)

At order 2 :

1 1

Ep = Sof(2)x3 = SpRows»3,
2 2
1 (8)

Ex = —pRyx

k 2,0 0X25
(Y9, RM)

ith|xp=~2"— 7/ R=Ry+RW4+RA) 4 .
with | X2 V2 » and ot + + [CORIA - ARCHER]

Then, X + wixy =0,

o o ) ‘ N\ 7 X
with w? = p—Rgf(/) - El(l +2)(1—1). : 2(1)



Subscale oscillations
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Identification of the variables for the first order dynamic

Link with geometric variables

Differential geometry

First variations of average geometric quantities [Deserno, 2015]:

SV = / {R& (R(l) + R® 4 R(3)) + Ry ((R(l))2 + 2R(1)R(2)) + ER(3)} ds,
s? 3

55 = / [2Ro (R™ + R® + RE)) + ((RW)? 4 2RMRD) (10)
S2

% (RDARRD 1 RO ALRD 1 R A, R<2>)} ds.

Under incompressibility (6V = 0), order 2 devlopment and mode 2 perturbation, we
obtain : 2= S-S50 { x2 > 0 if prolate,

2 2 xo < 0 if oblate. (11)

f-to(vis). a-YSe(ss) | o

2 2

Xz is the right quantity which drives the motion studied in [Cordesse & al, 2020].
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DNS validation of the first order model and non-linearity

Measure of geometric variables ({G) below) on a droplet DNS using Mercur(v)e!
[Di Battista, 2021]

DNS post-processing of geometric
quantities combined with differential
geometry tools enable to precisely study
non-linear behaviour.

[CORIA - ARCHER]

Second order potential energy Geometric closure

E, = 183 §- S =r(Ro(5A - SFh))

1gitlab.com/rubendibattista/mercurve



Subscale oscillations
°

New distribution variable for droplets oscillations

Extension of M. Essadki's NDF by defining :

5:(/11,5"0,12,\7,), with @ = 0 (13)

For oscillating droplets : | n(x, t, &) = A(x, t, So, 9, vi)d(H — A 15(5"0, P)).

Link geometric variables to moments of n :

4;): (G) = mo0, Differential geometry
1 At order 2,
> (H = m + m s [ -~ o~
N/ (H) 1/2,0 1/2,2 i &R (SHf 50Ho),
ro= m + m,2, and H(Sy, ) is then explicit.
6T = mgpo.

— Two new moments are available : my /> > and my 2.
— When we reach sphericity, my /> > and m; > go to zero and the model
degenerates towards a model of polydisperse spherical droplets.



Subscale oscillations
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Distribution closure and averaged energies

. Poly-disperse closure
Mono-disperse closure

s _ (S0, %) =mé(So — (S0))5(w — ¥1)
"o = miS Gt (9 +m28(S0 — (S0)2)3( — v2),
3 moments needed : (15)

O SR e 6 moments needed :

J mo,0, My/2,0, M1,0, M3/2.0, M1/22, M12.
v
For the mono-disperse closure,
1/2
2/3
nem (So)1 = m3/20 / by = (m1,2) (16)
= mo,0, 0)1 = | ——— ) 1= 76 73
mo,o (mo,0)1/0(m3/2,0)

Assuming equi-probable phase within our droplets collection, the potential and kinetic
energies read :

1 373/2 « 2
Ep,cal/ = 520' (z - ZO) ) Ek,coll = sz <G> <8t V > - ZO) - (17)

— Subscale energies for the derivation of a reduced-order model with SAP.



Numerical strategy
°

A Finite-Volume solver : Josiepy
Josiepy? is a Finite-Volume solver created by R. Di Battista which solves :

oq+ V- <F(q) + D(q) - Vq) + B(q) - Vg = s(a). (18)

Good to know about Josiepy
@ An open-source solver using Python and the Numpy library,

@ Hands-on implementation : a new model requires only to add F, D and B for
the state g under scrutiny,

@ Classical space schemes (Rusanov, HLL, HLLC, Upwind) and time schemes
(Runge-Kutta) are available.

—— Rusanov —=— HLL

— Rusanov —+  HLL
—— HLLC —— Exact solution e Bxact slution  Rusanov — HLL
~~ HLLC —— Exact solution
20 1,000
6
15 800
600 4
=10 a
| 400 = J
5 ‘ 200(- 2
i ] |
0 0
; 0 02 04 06 08 1
0 02 04 06 08 1 x 0 02 04 06 08 1
x

x

(@ Velocity profile (b) Pressure profile (@) Density profile

2. . . .
gitlab.com/rubendibattista/josiepy
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Application to a two-phase model with interfacial density

For our targeted model, we would have at most :
q= (apk,apuk,apek,a,Z,Z(G),Z{H),ml/zg,mlg), k=1,2. (19)
Kelvin-Helmotz instability on a model with interfacial area density [Lhuillier, 2004]
2
HhX +V-(Xu)= §2V~U+SX(X, t,%). (20)

The initial interfacial imperfection within a velocity shear triggers the instability.
(Test-case from [Di Battista, 2021])

From top-left to bottom-right : Pressure, volumic fraction o, w = =t




Conclusion
°

Conclusion and perspectives

Conclusion

@ Identification of a new variable to describe droplets oscillations with two new
corresponding moments my;2 and my 2,

@ Derivation of kinetic and potential energies for SAP with both mono-disperse
and poly-disperse quadratures,

@ An efficient environment to study non-linearity with DNS post-processing of
geometric variables with Mercur(v)e, differential geometry and computational
algebra.

Perspectives

@ Derivation of a new set of equations with SAP using the new variable xy,

[A. Loison, R. Di Battista, S. Kokh, M. Massot, T. Pichard. Diffuse interface model for two-phase two-scale
flow using stationary action principle, geometrical variables and a finite-volume method. In preparation]

@ Add non-linear dynamics / geometrical closures to the model,

@ Development and implementation of specific schemes for Josiepy to stay in the
moments space for the kinetic approach (work in collaboration with K.
Ait-Ameur),

@ Application to model with evaporation (work in collaboration with W.
Haegeman, ONERA)

@ Investigate exchange terms between large and sub-scale using DNS.

[A. Loison, S. Kokh, M. Massot, T. Pichard. Sub-scale modeling for eulerian two-phase flows : analysis of
a perturbed droplet using differential geometry. In preparation]



Non-linear dynamics of the droplet

The next order of the dynamics gives us :

1 , f(I) g(l)
Ex = EpRgX/2, and Ep=0 (TX’2 - ﬁxf , (21)

H _ 1 * 1 2 1*43 (R(l))2
with X/—EW<\/IT , R 4 eR( )+ETTO ]

Third order variations of both S and SH give us that :

3Ro
3
1= i (Ro(S(H) — (S (H))o) — (S — So))- (22)
\/h(/*) —g(l")
ARCHER 128° Mercurve 128°
1072 ARCHER 256° Mercurve 256°
6
And the dynamic is given by :
— 4
.. 2 g(2) X22 !
—==-==0. 23 g
R ) Ry U
DNS with post-processing to get x; confirms the
same behaviour as the one of the ODE. 0
0 0.5 1 1.5
Time 5 10°5

S — Sy from [Di Battista, 2021]



Polydisperse closure

Let's use the 6 moments mo,0, my 2,0, M1,0, M3/2,0, M1/2,2, M2, for the quadrature

closure :

n(So, &) = md(So — (S0)1)8(& — €1) + Mmd(So — (S0)2)d(& — &2)- (24)
With A = (mo,0m3z ;2,0 — M1,0m1/2,0)> — 4(mo,0m1,0 — m§/270)(m1/2,0m3/2,0 —mio),
we obtain :

VA

2
1 mo,o(m1,0m1 /2,0 = Mo,0M3/2,0) + 2m1 /2,0(mM0,0m1,0 — My /5 o)
nm = mo,0 + >

VA

2
1 mo,0(m1,0m1 /2,0 = M0,0M3/2,0) +2m1/2,0(mo,0m1,0 — M /5 o)
n =2 | moo — ,

2 3 3
(50) (mo,0m3 /2,0 — mM1,0m1/2,0) VA + (mo,0m3/2,0 = M1,0Mm1/2,0)" + 2M0,0m7 o — 2M1,0M1 /2,0M3/2,0M0,0 + 2mMY /5 oM3,
0)1 =

> 2
2 ("’1/2,0 - "’°’°m1v°>

(50) (mo,0ms 2,0 — M1,0my2,0)VA + (mo,0ms3 2.9 — m1,0my 2,0)> + 2mo,0m3 o — 2m1 0my /2 0M3/2,0mM0,0 + 2'"?/2,0'"3/
0)2 =

2
2 (m%/z‘o — m0,0ml,D)
(26)

And two other expressions using the 6 moments for £; and &».



Oscillating model with Hamiltonian mechanics

Given kinetic and potential energies :

1 3n3/2 o
E,==20(XE—X% E, =
P 2 U( 0)7 k 8 Z<G>

We assumed 9:a = 0:(X (G)) = 0 and we note :

373/2 «a
_ , — VX —3%9), =V -3,
2 pZ<G) P m( t O) q 0
. L _ P q = 0pH,
The hamiltonian : H = £ + Ep, then p = —0gH,
..p
q=—,
m
p= —20q,
g+—q=

We recover the harmonic oscillator.

(27)

(28)

(29)

(30)
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