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First arrival time

• The eikonal equation characterizes the first arrival time of a wave front propagating inside a domain

at a speed determined by a given metric.

• In geophysics, the eikonal equation can be obtained as the high-frequency approximation of the elastic

wave equation, with the metric defined by the elastic properties of the geological medium.

Figure 1: Seismogram and first arrival time (of the P wave)

• We face specific challenges when solving the eikonal equation, with difficulties arising in anisotropic 3D

media (Le Bouteiller et al., 2019; Desquilbet et al., 2020).
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TTI medium

• A typical model for the elastic properties of a geophysical medium is the TTI (tilted transverse

isotropic) model: we suppose that the elastic properties of the medium are the same in any direction

perpendicular to a symmetry axis.

• A TTI medium can naturally occur from isotropic sedimentary layers which can be treated as

anisotropic for seismic waves propagating at wavelengths much larger than the layer thicknesses.

Figure 2: Sedimentary layers
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TTI equation

The first arrival time u is a viscosity solution to the TTI equation, which comes from a high-frequency

approximation of the elastic wave equation, of the form:
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Slowness surfaces

TTI equation: ap4
r + bp4

z + cp2
r p
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r + ep2
z = 1

• The TTI equation actually has several solutions, corresponding to the propagation speeds of the

P-wave (the fastest) and of the S-wave.

• We call slowness surfaces the solutions to the TTI equation with parameter p: the interior surface

corresponds to the P-wave, and the exterior surface corresponds to the S-wave.

Figure 3: Slowness surfaces for two TTI media in the (pr , pz ) domain
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Idea of the numerical scheme

• A Riemannian metric is a metric for which the slowness surface is an ellipse, and eikonal equations

with Riemannian metrics can be solved efficiently with tools from (Mirebeau, 2014).

• For TTI media, the idea is to approximate the P-slowness surfaces by ellipses either by the outside or

by the inside, and locally consider the TTI metric as an optimization problem over Riemannian metrics.

Figure 4: Envelope by ellipses of the P-slowness surfaces
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Obtaining the envelope by ellipses

The TTI equation can be considered in the “root domain”:

ap4
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2
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r + ep2
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r + bq2
z + cqrqz + dqr + eqz = 1

with qr = p2
r , qz = p2

z .

• The second equation is the equation of a conic, for which we can calculate tangential straight lines.

• In the (pr , pz) domain, the straight lines become ellipses, which correspond to Riemannian metrics.

Figure 5: Example of tangential ellipse and representation in the root domain
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Obtaining the envelope by ellipses

The TTI equation can be considered in the “root domain”:

ap4
r + bp4

z + cp2
r p

2
z + dp2

r + ep2
z = 1 becomes aq2

r + bq2
z + cqrqz + dqr + eqz = 1

with qr = p2
r , qz = p2

z .

• The second equation is the equation of a conic, for which we can calculate tangential straight lines.

• In the (pr , pz) domain, the straight lines become ellipses, which correspond to Riemannian metrics.

Figure 6: Example of tangential ellipse and representation in the root domain
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Obtaining the envelope by ellipses

The TTI equation can be considered in the “root domain”:
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• The second equation is the equation of a conic, for which we can calculate tangential straight lines.

• In the (pr , pz) domain, the straight lines become ellipses, which correspond to Riemannian metrics.

Figure 7: Example of tangential ellipse and representation in the root domain
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Remarks on the envelope

• For a slowness surface, the conic in the root domain is either a hyperbola or an ellipse, which leads to

an envelope by ellipses of the P-surface either by the outside or by the inside.

• Therefore, we can consider the TTI metric as either a minimum or a maximum over Riemannian

metrics.

Figure 8: Envelope by ellipses
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Fast Marching method

• The Fast Marching method is a single-pass method, of complexity n log(n), similar to the Dijkstra

algorithm, in which we follow the propagation of a wavefront inside the discretized domain (Sethian,

1996; Tsitsiklis, 1995).

• The arrival time at each point is computed by a local update operator Λ, which estimates the arrival

time at a position x from the arrival times at its neighbours y :

u(x) = Λ[u(y), y neighbours of x ]
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Update operator for a Riemannian metric

• A Riemannian metric in dimension n is locally characterized by a symmetric positive definite matrix

D ∈ S++
n , with the corresponding eikonal equation: ||∇u(x)||D(x) = 1.

• Assume that we have the decomposition: D =
d∑

i=1

ρieie
T
i , with ρi > 0 and ei ∈ Zn (such a

decomposition can be obtained in dimension 3 with the Selling decomposition).

• Then we can consider the numerical scheme on the Cartesian grid with grid size h:

||∇u(x)||2 =
d∑

i=1

ρi max{0, u(x)− u(x ± hei )

h
}2 +O(h)

• From this, we can define the local update operator Λ by:

Λu(x) = λ⇔
d∑

i=1

ρi max{0, λ− u(x ± hei )

h
}2 = 1
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1D optimization problem over Riemannian metrics

In the case of a maximum (resp. minimum) over a set of Riemannian metrics indexed by k ∈ K, we modify

the local update operator as:

u(x) = max
k∈K

Λk [u(y), y neighbours of x ]

(resp. u(x) = min
k∈K

Λk [u(y), y neighbours of x ])

We considered two methods to solve the optimization problem:

• Exhaustive grid-search over ellipses: not very precise, but can be done very efficiently with GPU

acceleration

• Newton-like algorithm: the optimization problem is not globally convex (resp. concave), but it can be

divided into a finite number of sections, and a search algorithm with an exponential convergence rate is

possible in each section.
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Analysis of the optimization problem

• The optimization problem over Riemannian metrics corresponds to an optimization over a segment

with the mapping presented in Figure 9.

Figure 9: Left: Slowness surfaces of Riemannian metrics, with mapping:
(

1+a b
b 1−a

)
, a2 + b2 < 1

Right: Stencils used in the corresponding numerical scheme
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Analysis of the optimization problem

• For a same set of stencils used in the numerical scheme, we showed that the optimization problem has

at most one local extremum.

Figure 10: Examples of 1D optimization problems. The vertical red lines corresponds to the modifications of the
stencils needed for the Riemannian scheme.
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Use of conformal transformation to create a non-trivial analytical case

We want to study the performances of our numerical solver on a heterogeneous 3D TTI metric for which we

know the exact solution.

• We know how to obtain the exact solution for any homogeneous metric.

• We know how conformal transformations modify both the metric and the space.

Figure 11: Image of a cube by a ”special conformal transformation”
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Heterogenous 3D metric with known exact solution

• From the conformal transformation on a homogeneous metric, we obtain a fully anisotropic

heterogeneous medium.

• We can solve the corresponding eikonal equation with our numerical solver. (Figure, left)

• Besides, it also corresponds to a homogeneous metric when it is mapped by the conformal

transformation, and we can compute the exact solution in this case. (Figure, right)

Figure 12: Cross-sections of the arrival time before and after mapping by the transformal conformation
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Convergence order of L2-error and computation time

• The L2-error is of order 2 relatively to the grid step size, and computation time is quasi-linear relatively

to the number of points (optimization method used: Newton-like algorithm).

• Proper attention to source factorization is needed to achieve order 2: we implemented additive source

factorization and a multiscale strategy around the source point.

• Examples computed on a laptop with 32G RAM, Processor Intel Core i7-8665U CPU @ 1.90GHz x 8

(computation time for a 209 × 209 × 209 model: 4min 02s).

Figure 13: Error convergence and computation time
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Conclusions and perspectives

Conclusion:

• I presented an algorithm to compute the first arrival time of seismic waves in 3D TTI media, with a

single-pass approach using the Fast Marching method.

• We obtained second-order precision scheme and quasi-linear in computation time on smooth test-cases.

Perspectives:

• Comparison between the two methods for the 1D optimization problem.

• Comparisons with other numerical schemes for the TTI equation.

• Numerical applications on realistic test cases.

• Integration of the method in a scheme for tomography in seismic imaging.
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