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Context

Flow cytometry data
Quantifying cellular markers in a biological sample (e.g. blood
draw) cell-by-cell.
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Context

Flow cytometry data
Quantifying cellular markers in a biological sample (e.g. blood
draw) cell-by-cell.

e The biological markers are stained.

e The light emitted by a maker indicates whether the marker is
present or not on the cell.
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Modelling

e The observation X; € RY corresponds to the measures on the
‘th
i cell.

e For m e {1,...,d}, the coefficient Xi(m) corresponds to the
light emitted by the biological marker m.

e In a data set Xy, ..., Xj, the number of observation range from
10 000 to 200 000.
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Modelling

e The observation X; € RY corresponds to the measures on the
th
I

cell.

e For m e {1,...,d}, the coefficient Xi(m) corresponds to the
light emitted by the biological marker m.

e In a data set Xy, ..., Xj, the number of observation range from

10 000 to 200 000.
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Table 1 — Cytometry measurement for one cell. d = 7.
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Objective

Quantify relative abundance of cell types within the sample.
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Application
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Quantify relative abundance of cell types within the sample.

clinical practice : Monitor human disease and response to therapy.
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Data analysis
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Figure 2 — Front. Immunol., 27 July 2015.

Manual gating
Drawbacks : Time consuming, expensive and poorly reproducible.
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Automated methods

Unsupervised methods

e Kmeans
e Hierarchical clustering

e Mixture models
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Automated methods

Unsupervised methods

e Kmeans
e Hierarchical clustering

e Mixture models

Supervised methods

e Deep learning
e Quadratic discriminant analysis

e Random Forest

Manual gating is still the benchmark methods.
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Challenges of the automated analysis
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Two samples analysed from the same patient. Cytometry

measurements were performed in two different laboratories.
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Challenges of the automated analysis
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Wasserstein Distance

Let o and 3 two probability measures on R with finite second
moment.

Let M(a, B) be the set of probability measures on RY x RY with
marginals « and /3.
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Wasserstein Distance

Let o and 3 two probability measures on R with finite second
moment.

Let M(a, B) be the set of probability measures on RY x RY with
marginals « and /3.

Definition

The Wasserstein distance between o and [ is defined as

Wief)= min [ cxpdrten). )
meN(a,B) JRdxRd

where c(x,y) = [|x - y|[3.
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Wasserstein Distance

Discrete Setting

If o = Z,’ aj0y, and g = Zle bjdy, are two discrete probability
distributions on RY the Wasserstein distance reads :

2
W; (e, 8) = PE’U'gb Z CijPij (2)

where G j = ||x; —yjH%.
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Wasserstein Distance

Discrete Setting

If o = Z,’ aj0y, and g = ijl bjdy, are two discrete probability
distributions on RY the Wasserstein distance reads :

2
W; (e, 8) = PE’E'gb Z CijPij (2)

where G j = ||x; —yjH%.

Computational Cost
Suppose « and [ are two measures with equal size .

e Requires to store a N x N matrix.
e Linear programming problem.

3 . .
e O(N>log(N)) operations required. 10/30



Entropic regularization (M.Cuturi 2013)

Regularized Wasserstein Distance
For ov and 3 two probability measures the regularized Wasserstein

distance is defined as :

W(a,8) = min /R ., ey)dn(y) +eHm). (3

where € > 0 and
H(m) = fyoma o8 (3235

(x,9)) = 1) dr(x,y)
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Entropic regularization (M.Cuturi 2013)

Regularized Wasserstein Distance
For ov and 3 two probability measures the regularized Wasserstein
distance is defined as :

W(a,8) = min /R ., ey)dn(y) +eHm). (3

where € > 0 and
H(m) = fpopo 108 (525506 v)) — 1) dn(x.y)

Dual problem

wia,8) = sup [ ux)da() + [ v)ds)

u,veC(RY) (4)
u(x)+v(y ) c(x,y)
= E/ : “da ® B(x,y)
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Dual problem in a discrete setting

We(a, )= max (u,2)+(v,b) —ele”™,a@b).  (5)
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Dual problem in a discrete setting

utpv—C

We(a,B8) = max_ (u,a)+(v,b) —ec(e = ,a®b).

ueR! veR/

Sinkhorn Algorithm

e Block coordinate ascent strategy,
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Dual problem in a discrete setting

We(a, )= max (u,2)+(v,b) —ele”™,a@b).  (5)

Sinkhorn Algorithm

e Block coordinate ascent strategy,

e In the case where | = J = N, computation of a solution in
O(N?log(N)) operations.
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W(a, B) =8.07 e=1-W*a,B)=8.49 £=10-W*%a, B)=14.12
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Stochastic optimal transport

Let 3 be any probability measure and o = Z,/':1 a0y .
Proposition (Genevay, Cuturi, Peyré and Bach (2016))
let e > 0,

Welen ¥) = w217, o) (6)

e Y is a random variable with distribution .

o g.(y,u) =3I, uiaj + uc(y) — e is easy to compute for all
y €RY9 and all u e R/
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Stochastic optimal transport

Let 3 be any probability measure and o = Z,/':1 a0y .
Proposition (Genevay, Cuturi, Peyré and Bach (2016))
let e > 0,

Welen ¥) = w217, o) (6)

Y is a random variable with distribution (.

g-(y,u) =31, viaj + uc(y) — ¢ is easy to compute for all
y €RY9 and all u e R/

Stochastic optimization techniques can be applied.
No need to store the full cost matrix.
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Application to flow cytometry data
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Domain adaptation (R.Flammary et al. (2019))

Framework

e The source distribution o is a mixture model.

e The target distribution [ is a mixture model.
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Domain adaptation (R.Flammary et al. (2019))

Framework

e The source distribution o is a mixture model.

e The target distribution [ is a mixture model.

Idea

Re-weight the source distribution in order to reduce the
Wasserstein distance W(«, /3) between the source and target
distribution.
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Domain adaptation (R.Flammary et al. (2019))

Framework

e The source distribution o is a mixture model.

e The target distribution [ is a mixture model.

Idea

Re-weight the source distribution in order to reduce the
Wasserstein distance W(«, /3) between the source and target
distribution.

Goal
Estimation of the weights of the mixture 7 in the target
distribution (.
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Domain adaptation (R.Flammary et al. (2019))

W(a(h), B) = 63.9

— a(h):h=10.8,0.2]
—— B:m=1[0.4,0.6]
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Domain adaptation (R.Flammary et al. (2019))

Wia(h), B) = 46.2

— a(h):h=1[0.7,0.3]
—— B:m=1[0.4,0.6]
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Domain adaptation (R.Flammary et al. (2019))

W(a(h), B) = 29.8

— a(h):h=10.6,0.4]
—— B:m=1[0.4,0.6]
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Domain adaptation (R.Flammary et al. (2019))

Wia(h), B) = 15.2
—— a(h): h=1[0.5,0.5]
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Domain adaptation (R.Flammary et al. (2019))

W(a(h), B) =4.0

— a(h):h=1[0.4,0.6]
—— B:m=1[0.4,0.6]
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Domain adaptation (R.Flammary et al. (2019))

W(a(h), B)=5.9

— a(h):h=10.3,0.7]
—— B:m=1[0.4,0.6]
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e Target measure : § = % le dy;

1N
e Source measure : oo = 7> ;4 0x;
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e Target measure : § = % le dy;

e Source measure : @ = %Zl{zl dx;

e Classification available for the source data set
—a= Zle ok
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e Target measure : § = % le dy;

e Source measure : @ = %Zl{zl dx;

e Classification available for the source data set
—a= Zle o

Re-weighting of the source data

For h = (h1, ..., hk) € Lk, the measure o re weighted by h is :

K
a(h) = Z hiok (7)
k=1
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e Target measure : § = % le dy;

e Source measure : a = %21{21 dx;

e Classification available for the source data set
—a= Zle o

Re-weighting of the source data

For h = (h1, ..., hk) € Lk, the measure o re weighted by h is :

K
a(h) = Z hiok (7)
k=1

Estimation of the class proportions in the target data set :

7 € arg min W¢(a(h), B) (8)
hes
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lllustration

Wa(h), B)=2.1

2 Source distribution a(h), h=[0.8,0.2] w0 Target distribution B, m=[0.3,0.7]
. . ©
mﬂs 00 05 10 15 20 mﬁ& 00 05 10 15 20
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lllustration

Wa(h), B)=1.2

Source distribution a(h), h=[0.6,0.4]

20

Target distribution 8, 1=[0.3,0.7]
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lllustration

W(a(h), B)=0.5

Source distribution a(h), h=[0.4,0.6]

20

Target distribution 8, 1=[0.3,0.7]
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lllustration

W(a(h), B)=0.2

Source distribution a(h), h=[0.3,0.7]

20

Target distribution 8, 1=[0.3,0.7]
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lllustration

o
e

W(a(h), B)=0.6

Source distribution a(h), h=[0.2,0.8]

20

Target distribution 8, 1=[0.3,0.7]
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Challenge

Design some algorithms to solve :

in We(alh = mi E Y,u, h
fmin W(a(h), ) = min maxElg:(Y, u, )], (9)
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Addition of a regularizing term on h (M.Ballu et al. (2020))

K
Regularization :  ¢(h) = Z hy log(hg). (10)
k=1
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Addition of a regularizing term on h (M.Ballu et al. (2020))

K
Regularization :  ¢(h) = Z hy log(hg). (10)
k=1

New optimization problem :

min W¥(a(h). 8) + Xe(h)
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Addition of a regularizing term on h (M.Ballu et al. (2020))

K
Regularization :  ¢(h) = Z hy log(hg). (10)
k=1
New optimization problem :

. .
min W=(a(h), ) + Ap(h) = min maxElg:(Y, u, h)] + Ap(h)
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Addition of a regularizing term on h (M.Ballu et al. (2020))

K
Regularization :  ¢(h) = Z hy log(hg). (10)
k=1

New optimization problem :

min W=(a(h), ) + Ap(h) = min maxElg:(Y, u, h)] + Ap(h)

€eR/
= max min E[g(Y, u, h)] + Ap(h)
(11)
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Addition of a regularizing term on h (M.Ballu et al. (2020))

Regularization :  ¢(h) = Z hy log(hg). (10)

New optimization problem :

min W=(a(h), ) + Ap(h) = min maxElg:(Y, u, h)] + Ap(h)

]R’
= max min Blg=(Y', u, h)] + Ao (h)
(11)

for u € R/, we can compute an explicit solution h(u) € X of the
problem minpes, E[g-(Y, u, h)] + Ap(h).

o (-7521)

Z/ 1exp< «© u))

ke{l,...K}, (h(u))k =

21/30



Using the expression of h(u), problem (11) boils down to

maXEyNﬁ[f—&/\(Y, u)] (12)
ueR/!

where Y is a random variable with distribution j.
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where Y is a random variable with distribution j.

e f.\(yj,u) is easy to compute for y; € RY an observation of Y,
and u € R/,
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where Y is a random variable with distribution j.

e f.\(yj,u) is easy to compute for y; € RY an observation of Y,
and u € R/,

e Estimate U of a maximizer u* of problem (15) with the
Robbins-Monro algorithm,
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e Estimate U of a maximizer u* of problem (15) with the
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Using the expression of h(u), problem (11) boils down to

maXEyNﬁ[f—&/\(Y, u)] (12)
ueR/!

where Y is a random variable with distribution j.

e f.\(yj,u) is easy to compute for y; € RY an observation of Y,
and u € R/,

e Estimate U of a maximizer u* of problem (15) with the
Robbins-Monro algorithm,

e From U we derive an estimate of the class proportions
7= h(U).

Single loop algorithm.
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Simulation study
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Figure 4 — 2D projection of simulated data where X; € R10.
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Simulation study

Source data set Target data set

o
source proportions target proportions
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Figure 5 — 2D projection of simulated data where X; € R0,

24/30



e Unsupervised method : Kmeans.

e Supervised methods : QDA and Random Forest.

Proportions
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Results on the flow cytometry data
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Figure 6 — Comparison of the estimated proportions # by CytOpT with
the manual gating benchmark 7. Source data set : Stanford1A.

26/30



Results on the flow cytometry data
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Figure 7 — Comparison of the proportions 7 estimated with CytOpT
and the manual benchmark 7 on the HIPC database.
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a € /b1i(ﬁ£d) a probability measure that can be decomposed as a
mixture of K probability measure ag, ..., ak :

a =31y prik.
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a € ./\/l}r(Rd) a probability measure that can be decomposed as a
mixture of K probability measure ag, ..., ak :

a =Yy prak. For 0 € i we define ag = 371, O
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a € ./\/l}r(Rd) a probability measure that can be decomposed as a
mixture of K probability measure ag, ..., ak :

o= Zszl pray. For 6 € ¥ we define ay = Zle Oy,
Let B € M’ (RY) an other probability measure.

quantity of interest
we define

0* € arg min W(ay, B).
0eX K
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Empirical versions of « and 3

A1 K K A
® &= 7) 10x =2 41T Zx,-eck Ox; = D gt 1Ok
o Gy =K | 0kdu

Ry
./B—j j:15Yj
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Empirical versions of « and 3

K
¢ a= /Z, 10x = Zk:l%ZX,-eCk X; Zk 1 e
° Ozg = Zk:l Hkozk

Ry
./B—j j:15Yj

Estimator

0. € arg min W¢(aq, B) (13)
hex
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Empirical versions of o and 3

A1 K K A
® &= 7) 10x =2 41T Zx,-eck Ox; = D gt 1Ok
o Gy =K | 0kdu

A J
« =35m0y,
Estimator

0. € arg min W¢(aq, B) (13)
hex

Goal
Proposing a data driven choice of € in order to minimize :

E[|[6* — || (14)
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Thank you for your attention !
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