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Context

Flow cytometry data

Quantifying cellular markers in a biological sample (e.g. blood

draw) cell-by-cell.

• The biological markers are stained.

• The light emitted by a maker indicates whether the marker is

present or not on the cell.
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Modelling

• The observation Xi ∈ Rd corresponds to the measures on the

i th cell.

• For m ∈ {1, ..., d}, the coefficient X
(m)
i corresponds to the

light emitted by the biological marker m.

• In a data set X1, ...,XI , the number of observation range from

10 000 to 200 000.

CCR7 CD4 CD45RA CD3 HLADR CD38 CD8

717.3 1146.5 3094.8 2526.3 1333.1 1510.2 3203.7

Table 1 – Cytometry measurement for one cell. d = 7.
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Quantify relative abundance of cell types within the sample.

Application

clinical practice : Monitor human disease and response to therapy.
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Data analysis

Figure 2 – Front. Immunol., 27 July 2015.

Manual gating

Drawbacks : Time consuming, expensive and poorly reproducible.
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Automated methods

Unsupervised methods

• Kmeans

• Hierarchical clustering

• Mixture models

Supervised methods

• Deep learning

• Quadratic discriminant analysis

• Random Forest

Manual gating is still the benchmark methods.
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Challenges of the automated analysis

Technical variability

Two samples analysed from the same patient. Cytometry

measurements were performed in two different laboratories.
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Wasserstein Distance

Let α and β two probability measures on Rd with finite second

moment.

Let Π(α, β) be the set of probability measures on Rd × Rd with

marginals α and β.

Definition

The Wasserstein distance between α and β is defined as

W 2
2 (α, β) = min

π∈Π(α,β)

∫
Rd×Rd

c(x , y)dπ(x , y). (1)

where c(x , y) = ||x − y ||22.
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Wasserstein Distance

Discrete Setting

If α =
∑I

i aiδxi and β =
∑J

j=1 bjδyj are two discrete probability

distributions on Rd the Wasserstein distance reads :

W 2
2 (α, β) = min

P∈U(a,b)

∑
i ,j

Ci ,jPi ,j (2)

where Ci ,j = ||xi − yj ||22.

Computational Cost

Suppose α and β are two measures with equal size N.

• Requires to store a N × N matrix.

• Linear programming problem.

• O(N3 log(N)) operations required.
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Entropic regularization (M.Cuturi 2013)

Regularized Wasserstein Distance

For α and β two probability measures the regularized Wasserstein

distance is defined as :

W ε(α, β) = min
π∈Π(α,β)

∫
Rd×Rd

c(x , y)dπ(x , y) + εH(π). (3)

where ε > 0 and

H(π) =
∫
Rd×Rd log

((
dπ

dα⊗β (x , y)
)
− 1
)
dπ(x , y)

Dual problem

W ε(α, β) = sup
u,v∈C(Rd )

∫
u(x)dα(x) +

∫
v(y)dβ(y)

− ε
∫

e
u(x)+v(y)−c(x,y)

ε dα⊗ β(x , y)

(4)
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Dual problem in a discrete setting

W ε(α, β) = max
u∈RI ,v∈RJ

〈u, a〉+ 〈v , b〉 − ε〈e
u⊕v−C

ε , a⊗ b〉. (5)

Sinkhorn Algorithm

• Block coordinate ascent strategy,

• In the case where I = J = N, computation of a solution in

O(N2 log(N)) operations.
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Stochastic optimal transport

Let β be any probability measure and α =
∑I

i=1 aiδxi .

Proposition (Genevay, Cuturi, Peyré and Bach (2016))

let ε ≥ 0,

Wε(α, β) = max
u∈RI

E[gε(Y , u)] (6)

• Y is a random variable with distribution β.

• gε(y , u) =
∑I

i=1 uiai + uc,ε(y)− ε is easy to compute for all

y ∈ Rd , and all u ∈ RI

• Stochastic optimization techniques can be applied.

• No need to store the full cost matrix.
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Application to flow cytometry data

(a) Stanford Patient 1 (b) Stanford Patient 3
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Domain adaptation (R.Flammary et al. (2019))

Framework

• The source distribution α is a mixture model.

• The target distribution β is a mixture model.

Idea

Re-weight the source distribution in order to reduce the

Wasserstein distance W (α, β) between the source and target

distribution.

Goal

Estimation of the weights of the mixture π in the target

distribution β.
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• Target measure : β = 1
J

∑J
j=1 δYj

• Source measure : α = 1
I

∑I
i=1 δXi

• Classification available for the source data set

→ α =
∑K

k=1 αk

Re-weighting of the source data

For h = (h1, ..., hK ) ∈ ΣK , the measure α re weighted by h is :

α(h) =
K∑

k=1

hkαk (7)

Estimation of the class proportions in the target data set :

π̂ ∈ arg min
h∈ΣK

W ε(α(h), β) (8)
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Illustration
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Challenge

Design some algorithms to solve :

min
h∈ΣK

W ε(α(h), β)

= min
h∈ΣK

max
u∈RI

E[gε(Y , u, h)], (9)
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Addition of a regularizing term on h (M.Ballu et al. (2020))

Regularization : ϕ(h) =
K∑

k=1

hk log(hk). (10)

New optimization problem :

min
h∈Σk

W ε(α(h), β) + λϕ(h) = min
h∈Σk

max
u∈RI

E[gε(Y , u, h)] + λϕ(h)

= max
u∈RI

min
h∈Σk

E[gε(Y , u, h)] + λϕ(h)

(11)

for u ∈ RI , we can compute an explicit solution h(u) ∈ ΣK of the

problem minh∈ΣK
E[gε(Y , u, h)] + λϕ(h).

k ∈ {1, ...,K}, (h(u))k =
exp

(
− (ΓTu)k

λ

)
∑K

l=1 exp
(
− (ΓTu)l

λ

)
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Using the expression of h(u), problem (11) boils down to

max
u∈RI

EY∼β[fε,λ(Y , u)] (12)

where Y is a random variable with distribution β.

• fε,λ(yj , u) is easy to compute for yj ∈ Rd an observation of Y ,

and u ∈ RI ,

• Estimate Û of a maximizer u∗ of problem (15) with the

Robbins-Monro algorithm,

• From Û we derive an estimate of the class proportions

π̂ = h(Û).

Single loop algorithm.
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• From Û we derive an estimate of the class proportions

π̂ = h(Û).
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Simulation study

Figure 4 – 2D projection of simulated data where Xi ∈ R10.

Spatial shift between the two data sets
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Simulation study

Figure 5 – 2D projection of simulated data where Xi ∈ R10.
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• Unsupervised method : Kmeans.

• Supervised methods : QDA and Random Forest.
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Results on the flow cytometry data
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Figure 6 – Comparison of the estimated proportions π̂ by CytOpT with

the manual gating benchmark π. Source data set : Stanford1A.
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Results on the flow cytometry data

Figure 7 – Comparison of the proportions π̂ estimated with CytOpT

and the manual benchmark π on the HIPC database.
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α ∈M1
+(Rd) a probability measure that can be decomposed as a

mixture of K probability measure α1, ..., αK :

α =
∑K

k=1 ρkαk .

For θ ∈ ΣK we define αθ =
∑K

k=1 θkαk .

Let β ∈M1
+(Rd) an other probability measure.

quantity of interest

we define

θ∗ ∈ arg min
θ∈ΣK

W (αθ, β).
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Empirical versions of α and β

• α̂ = 1
I

∑I
i=1 δXi

=
∑K

k=1
nk
I

∑
Xi∈Ck

δXi
=
∑K

k=1
nk
I α̂k .

• α̂θ =
∑K

k=1 θk α̂k

• β̂ = 1
J

∑J
j=1 δYj

Estimator

θ̂ε ∈ arg min
h∈Σk

W ε(α̂θ, β̂) (13)

Goal

Proposing a data driven choice of ε in order to minimize :

E[||θ∗ − θ̂ε||] (14)
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Thank you for your attention !
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Back up

fε,λ(yj , u) = ε

(
log(bj)− log

(
I∑

i=1

exp

(
ui − c(xi , yj)

ε

)))

− λ log

(
K∑
l=1

exp

(
−(ΓTu)l

λ

))
− ε

(15)
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